Compilers

the addresses of these variables. Thus the second line in Fig. 5.14(c) specifies
that one variable is to be read, and the third line gives the address of this
variable. The address of the first word of the parameter list will automatically
be placed in register L by the JSUB instruction. The subroutine XREAD can use
this address to locate its parameters, and then add the length of the parameter
list to register L to find the true return address.

Figure 5.14(b) shows a set of routines that might be used to accomplish this
code generation. The first two routines correspond to alternative structures for
<id-list>, which are shown in Rule 6 of the grammar in Fig. 5.2. In either case,
the token specifier S(id) for a new identifier being added to the <id-list> is
inserted into the list used by the code-generation routines, and LISTCOUNT
is updated to reflect this insertion. After the entire <id-list> has been parsed,
the list contains the token specifiers for all the identifiers that are part of the
<id-list>. When the <read> statement is recognized, these token specifiers are
removed from the list and used to generate the object code for the READ.

Remember that the parser, in generating the tree shown in Fig. 5.14(a),
recogniges first <id-list> and then <read>. At each step, the parser calls the

appropriate code-generation routine. You should work through this example -

carefully to be sure you understand how the code-generation routines in
Fig. 5.14(b) create the object code that is symbolically represented in Fig. 5.14(c).

Figure 5.15 shows the code-generation process for the assignment state-
ment on line 14 of Fig. 5.1. Figure 5.15(a) displays the parse tree for this state-
ment. Most of the work of parsing involves the analysis of the <exp> on the
right-hand side of the :=. As we can see, the parser first recognizes the id
SUMSQ as a <factor> and a <term>; then it recognizes the int 100 as a
<factor>; then it recognizes SUMSQ DIV 100 as a <term>, and so forth. The
order in which the parts of the statement are recognized is the same as the
order in which the calculations are to be performed: SUMSQ DIV 100 and
MEAN * MEAN are computed, and then the second result is subtracted from
the first.

As each portion of the statement is recognized, a code-generation routine
is called to create the corresponding object code. For example, suppose we
want to generate code that corresponds to the rule

<term>, ::= <term>, * <factor>

The subscripts are used here to distinguish between the two occurrences of
<term>. Our code-generation routines perform all arithmetic operations using
register A, so we clearly need to generate a MUL instruction in the object code.
The result of this multiplication, <term>,, will be left in register A by the MUL.
If either <term>, or <factor> is already present in register A, perhaps as the
result of a previous computation, the MUL instruction is all we need. Otherwise,

261

262 System Software

(assign)
(exp)
{exp)
(term) (term)
(term) . (term)
{factor) (factor) (factor) (factor)
id c= ia D1V int - id * 16
{VARIANCE} {suMsqQ} {100} {MEAN} {MEAN}
@ ?
<assign> ::= id := <exp>

GETA (<exp>)
generate [STA S(id)]
REGA := null

<exp> ::= <term>

S(<exp>) := S(<term>)
if S(<exp>) = rA then
REGA := <exp>

<exp>, :i= <exp>, + <term>

if S(<exp>,) = rA then
generate [ADD S(<term>)])
else if S(<term>) = rA then
generate [ADD S(<exp>,)]
else
begin
GETA (<exp>,)
generate [ADD S(<term>)]
end
S(<exp>,) := rA
REGA := <exp>,

Figure 5.15 Code generation for an assignment statement.

<exp>;

<term> :

<term>l H

<term>l HR

Figure 5.15

Compilers

11= <exp>, - <term>

if S(<exp>,) = rA them
generate [SUB S(<term>)]

‘' else
begin
GETA (<exp>,)
generate [SUB S(<term>)]
end

S(<exp>,) := rA
REGA := <exp>,

:= <factor>

S(<term>) := S(<factor>)
if S(<term>) = rA then
REGA := <term>

1= <term>, * <factor>

if S(<term>,) = rA then
generate [MUL S(<factor>)]

else if S(<factor>) = rA then
generate [MUL S(<term>,)]

else
begin
GETA (<term>,)
generate [MUL S(<factor>)]
end
S(<term>,) := rA

REGA := <term>,

= <term>, DIV <factor>

if S(<term>,) = rA then
generate [DIV S(<factor>)]
else
begin

GETA (<term>,)
generate [DIV S(<factor>)]
end
S(<term>,) := rA
REGA := <term>,

(cont'd)

263

264 System Software

<factor> ::= id

S(<factor>) := S(id)
<factor> ::= int

S(<factor>) := S(int)
<factor> ::= (<exp>)

S(<factor>) := S(<exp>)

if S(<factor>) = rA then
REGA := <factor>

(b)

procedure GETA (NODE)
begin
if REGA = null then
generate [LDA S(NODE)]
else if S(NODE) m rA then
begin
create a new working variable Ti
generate [STA Ti]
record forward reference to Ti

S(REGA) := Ti
generate [LDA S(NODE)]
end {if # rA}
S(NODE) := rA
REGA := NODE
end {GETA}

(c)

LDA SUMSQ

DV #100
STA T1
LDA MEAN
MUL MEAN
STA T2
LDA Tl
SUB T2

STA VARIANCE
(d
Figure 5.15 (contd)

Compilers

we must generate a LDA instruction preceding the MUL. In that case we must
also save the previous value in register A if it will be required for later use.

Obviously we need to keep track of the result left in register A by each
segment of code that is generated. We do this by extending the token-specifier
idea to monterminal nodes of the parse tree. In the example just discussed, the
node specifier S(<term>,) would be set to rA, indicating that the result of this
computation is in register A. The variable REGA is used to indicate the highest-
level node of the parse tree whose value is left in register A by the code generated
so far (i.e., the node whose specifier is rA). Clearly, there can be only one such
node at any point in the code-generation process. If the value corresponding to
anode is not in register A, the specifier for the node is similar to a token specifier:
either a pointer to a symbol table entry for the variable that contains the value,
or an integer constant. g

As an illustration of these ideas, consider the code-generation routine in
Fig. 5.15(b) that corresponds to the rule

<teym>, ::= <term>, * <factor>

If the node specifier for either operand is rA, the corresponding value is already
in register A, so the routine simply generates a MUL instruction. The operand
address for this MUL is given by the node specifier for the other operand (the
one not in the register). Otherwise, the procedure GETA is called. This procedure,
shown in Fig. 5.15(c), generates a LDA instruction to load the value associated
with <term>, into register A. Before the LDA, however, the procedure generates
a STA instruction to save the value currently in register A (unless REGA is null,
indicating that this value is no longer needed). The value is stored in a temporary
variable. Such variables are created by the code generator (with names T1, T2,...)
as they are needed for this purpose. The temporary variables used during a com
pilation will be assigned storage locations at the end of the object program. The
node specifier for the node associated with the value previously in register A,
indicated by REGA, is reset to indicate the temporary variable used.

After the necessary instructions are generated, the code-generation
routine sets S(<term>,) and REGA to indicate that the value corresponding to
<term>, is now in register A. This completes the code-generation actions for
the * operation. «

The code-generation routine that corresponds to the + operation is almost
identical to the one just discussed for *. The routines for DIV and - are similar,
except:that for these operations it is necessary for the first operand to be in
register A. The code generation for <assign> consists of bringing the value to
be assigned into register A (using GETA) and then generating a STA instruction.
Note that REGA is then set to null because the code for the statement has been
completely generated, and any intermediate results are no longer needed.

265

266

System Software

The remaining rules shown in Fig. 5.15(b) do not require the generation of
any machine instructions since no computation or data movement is involved.
The code-generation routines for these rules simply set the node specifier of
the higher-level node to reflect the location of the corresponding value.:

Figure 5.15(d) shows a symbolic representation of the object code generated
for the assignment statement being translated. You should carefully work
through the generation of this code to understand the operation of the routines
in Fig. 5.15(b) and (c). You should also confirm that this code will perform the
computations specified by the source program statement. L

- Figure 5.16 shows the other code-generation routines for the grammar in
Fig. 5.2. The routine for <prog-name> generates header information in the
object program that is similar to that created from the START and EXTREF
assembler directives. It also generates instructions to save the return address
and jump to the first executable instruction in the compiled program. When the
complete <prog> is recognized, storage locations are assigned to any tempo-
rary (Ti) variables that have been used. Any references to these variables are
then fixed in the object code using the same process performed for forward ref-
erences by a one-pass assembler. The compiler also generates any Modification
records required to describe external references to library subroutines.

Code generation for a <for> statement involves a number of steps. When
the <index-exp> is recognized, code is generated to initialize the index
variable for the loop and test for loop termination. Information is also saved
on the stack for later use. Code is then generated separately for each statement
in the body of the loop. When the complete <for> statement has been parsed,
code is generated to increment the value of the index variable and to jump
back to the beginning of the loop to test for termination. This code-generation
routine uses the information saved on the stack by the routine for <index-exp>.
Using a stack to store this information allows for nested <for> loops.

You are encouraged to trace through the complete code-generation process
for this program, using the parse tree in Fig. 5.4 as a guide. The result;should
be as shown in Fig. 5.17. Once again, it is important to remember that this is
merely a symbolic representation of the code generated. Most compilers
would produce machine language code directly.

5.2 MACHINE-DEPENDENT COMPILER FEATURES

In this section we briefly discuss some machine-dependent extensions to the
basic compilation scheme presented in Section 5.1. The purpose of a compiler
is to translate programs written in a high-level programming language into
the machine language for some computer. Most high-level programming lan-
guages are designed to be relatively independent of the machine being used

Compilers 267

<prog> ::= PROGRAM <prog-name> VAR <dec-list> BEGIN <stmt-list> END.

generate [LDL RETADR]

‘generate [RSUB]

for each Ti variable used do
generate [Ti RESW 11" °

insert [J EXADDR] {jump to first executable instruction}
in bytes 3-5 of object program

fix up forward references to Ti variables

generate Modification records for external references

generate [END]

<prog-name> ::= 1id

generate [START 0] .

generate [EXTREF XREAD, XWRITE]

generate {STL RETADR]

add 3 to LOCCTR {leave room for jump to first executable instruction}
generate [RETADR RESW 1]

<dec-list> ::= {either alternative}

save LOCCTR as EXADDR {tentative address of first executable instruction}

<dec> ::= <id-list> : <type>

for each item on list do
begin
remove S(NAME) from list
enter LOCCTR into symbol table as address for NAME
generate [S(NAME) RESW 1]
end
LISTCOUNT := 0

<type> ::= INTEGER

{no code-generation action}

<stmt-list> ::= {either alternative}

{no code-generation action}

Figure 5.16 Other code-generation routines for the grammar from
Fig. 5.2.

System Software

<stmt> ::= {any alternative}

{no code-generation action}

<write> ::= WRITE (<id-list>)

generate [+JSUB XWRITE]
record external reference to XWRITE
generate [WORD LISTCOUNT]
for each item on list do
begin
remove S(ITEM) from list
generate [WORDS (ITEM)]
end
LISTCOUNT := 0

<for> ::= FOR <index-exp> DO <body>

pop JUMPADDR from stack {address of jump out of loop}
pop S(INDEX) from stack {index variable}

pop LOOPADDR from stack {beginning address of loop}
generate [LDA S{INDEX)]

generate [ADD #1]

generate [J LOOPADDR]

insert [JGT LOCCTR] at location JUMPADDR

<index-exp> ::= id := <exp>, TO <exp>,

GETA (<exp>ﬂ

push LOCCTR onto stack {beginning address of loop}
push S(id) onto stack {index variable}

generate [STA S(id)]

generate [COMP S(<exp>,)]

push LOCCTR onto stack {address of jump out of loop}
add 3 to LOCCTR {leave room for jump instruction}
REGA := null

<body> ::= {either alternative)

{no code-generation action}

Figure 5.16 (cont'd)

(although the extent to which this goal is realized varies considerably). This
means that the process of analyzing the syntax of programs written in these
languages should also be relatively machine-independent. It should come as
no surprise, therefore, that the real machine dependencies of a compiler are
related to the generation and optimization of the object code.

Line

10

11

13

14

15

STATS

RETADR
$UM
SUMSQ
b

VALUE
MEAN

VARIANCE
{EXADDR}

'

{L1)

(L2}

Tl
T2

Compilers
Symbolic Representation of Generated Code

START 0 {program header}
EXTREF XREAD, XWRITE

STL RETADR {save return address}
J {EXADDR}

RESW 1

RESW 1 {variable declarations}
RESW 1

RESW 1

RESW 1

RESW 1

RESW 1

LDA #0 {SUM := 0}

STA SUM

LDA #0 {SUMSQ := 0}

STA SUMSQ

LDA #1 {FOR I := 1 TO 100}
STA I

COMP #100

JGT {L2}

+JSUB XREAD {READ(VALUE) }

WORD 1

WORD VALUE

LDA SUM {SUM := SUM + VALUE}
ADD VALUE

STA SUM

LDA VALUE {SUMSQ := SUMSQ + VALUE * VALUE}
MUL VALUE

ADD SUMSQ

STA SUMSQ

LDA I {end of FOR loop}

ADD #1

J {L1}

LDA SUM {MEAN := SUM DIV 100}
DIV #100

STA MEAN

LDA SUMSQ {VARIANCE := SUMSQ DIV 100 - MEAN * MEAN}
DIV #100

STA T1

LDA MEAN

MUL MEAN

STA T2

LDA T1

SUB T2

STA VARIANCE
+JSUB XWRITE {WRITE (MEAN, VARIANCE) }
WORD 2

WORD MEAN

WORD VARIANCE

LDL RETADR {return}

RSUB

RESW 1 {working variables used}
RESW 1

END

Figure 5.17 Symbolic representation of object code generated for the
program from Fig. 5.1.

269

270

System Software

At an elementary level, of course, all code generation is machine-dependent
because we must know the instruction set of a computer to generate code for it.
However, there are many more complex issues involving such problems as the
allocation of registers and the rearrangement of machine instructions to improve
efficiency of execution. Such types of code optimization are normally done by
considering an intermediate form of the program being compiled. In this intetme-
diate form, the syntax and semantics of the source statements have beet com-
pletely analyzed, but the actual translation into machine code has not yet been
petformed. It is much easiet to analyze and manipulate this intermediate form of
the program for the purposes of code optimization than it would be to perform
the corresponding operations on either the source program or the machine code.

In Section 5.2.1 we introduce one common way of representing a program
in such an intermediate form. The intermediate form used in a compiler, if one
is used, is not strictly dependent on the machine for which the compiler is
designed. However, such a form is necessary for our discussion of
machine-dependent code optimization in Section 5.2.2. There are also many
machine-independent techniques for code optimization that use a similar
intermediate representation of the program. Some of these techniques are
discussed in Section 5.3.

5.2.1 Intermediate Form of the Program

There are many possible ways of representing a program in an intermediate
form for code analysis and optimization. Discussions of some of these can be
found in Aho et al. (1988). The method we describe in this section represents
the executable instructions of the program with a sequence of quadruples. Each
quadruple is of the form

operation, opl, op2, result

where operation is some function to be performed by the object code, op1 and op2
are the operands for this operation, and result designates where the resulting
value is to be placed.

For example, the source program statement

SUM := SUM + VALUE
could be represented with the quadruples]

, SUM, VALUE, i,

Compilers

L , SUM

The entry i, designates an intermediate result (SUM + VALUE); the second
quadruple assigns the value of this intermediate result to SUM. Assignment is

treated as a separate operation (:=) to open up additional possibilities for code
optimization. Similarly, the statement

VARIANCE := SUMSQ DIV 100 — MEAN * MEAN

could be represented with the quadruples

DIV, SUMSQ, #100, i,
* , MEAN , MEAN, i,
- i, i, i,
=, i, , VARIANCE

3

These quadruples would be created by intermediate code-generation
routines similar to those discussed in Section 5.1.4. Many types-of analysis
and manipulation can be performed on the quadruples for code-optimization
purposes. For example, the quadruples can be rearranged to eliminate
redundant load and store operations, and the intermediate results i; can be
assigned to registers or to temporary variables to make their use as efficient
as possible. We discuss some of these possibilities in later sections. After
optimization has been performed, the modified quadruples are translated
into machine code.

Note that the quadruples appear in the order in which the corresponding
object code instructions are to be executed. This greatly simplifies the task
of analyzing the code for purposes of optimization. It also means that the
translation into machine instructions will be relatively easy.

Figure 5.18 shows a sequence of quadruples corresponding to the source
program in Fig. 5.1. Note that the READ and WRITE statements are repre-
sented with a CALL operation, followed by PARAM quadruples that specify
the parameters of the READ or WRITE. These PARAM quadruples will, of
course,ibe translated into parameter list entries, like those shown in Fig. 5.17,
when the machine code is generated. The JGT operation in quadruple 4
compares the values of its two operands and jumps to quadruple 15 if the first
operand is greater than the second. The J operation in quadruple 14 jumps
unconditionally to quadruple 4.

You should compare Figs. 5.18 and 5.1 to see the correspondence between
source statements and quadruples. You may also want to compare the quadru-
ples in Fig. 5.18 with the object code representation shown in Fig. 5.17.

271

272

System Software

Operation Op1 Op2 Result
(1) = #0 SUM {SUM := 0}
(2) = #0 SUMSQ {SUMSQ := 0} f
(3) 1= #1 I {FOR I := 1 TO 100}
(4) JGT T #100 (15)
(5) CALL XREAD {READ(VALUE) }
(6) PARAM VALUE
(7) + SuM VALUE i, {SUM := SUM + VALUE}
(8) := i1 SUM
(9) * VALUE VALUE i2 {SUMSQ := SUMSQ +
(10) + SUMSQ i, i, VALUE * VALUE}
(11) := i, SUMSQ
(12) + I #1 i, {end of FOR loop}
(13) := i, I
(14) g (4)
(15) DIV SUM #100 ig {MEAN := SUM DIV 100}
(16) := i MEAN
(17) DIV SUMSQ #100 i6 {VARIANCE :=
(18) =* MEAN MEAN i7 SUMSQ DIV 100
(19) - i, i, ig - MEAN * MFAN}
(20) := i, VARIANCE :
(21) CaLL XWRITE {WRITE (MEAN, VARIANCE) }
(22) PARAM MEAN
(23) PARAM VARIANCE

Figure 5.18 Intermediate code for the program from Fig. 5.1.

5.2.2 Machine-Dependent Code Optimization

In this section we briefly describe several different possibilities for performing
machine-dependent code optimization. Further details concerning these
techniques can be found in many textbooks on compilers, such as Aho et al.
(1988). ,
The first problem we discuss is the assignment and use of registers. On many
computers there are a number of general-purpose registers that may be used to
hold constants, the values of variables, intermediate results, and so on. These
same registers can also often be used for addressing (as base or index registers).
We concentrate here, however, on the use of registers as instruction operands.
Machine instructions that use registers as operands are usually faster than
the corresponding instructions that refer to locations in memory. Therefore, we
would prefer to keep in registers all variables and intermediate results that
will be used later in the program. Each time a value is fetched from memory,
or calculated as an intermediate result, it can be assigned to some register. The
value will be available for later use without requiring a memory reference.

Compilers

This approach also avoids unnecessary movement of values between memory
and registers, which takes time but does not advance the computation. We
used a very simple version of this technique in Section 5.1.4 when we kept
track of the value currently in register A.

Consider, for example, the quadruples shown in Fig. 5.18. The variable
VALUE is used once in quadruple 7 and twice in quadruple 9. If enough regis-
ters are available, it would be possible to fetch this value only once. The value
would be retained in a register for use by the code generated from quadruple 9.
Likewise, quadruple 16 stores the value of i into the variable MEAN. If i, is
assigned to a register, this value could still be available when the value of
MEAN is required in quadruple 18. Such register assignments can also be used
to eliminate much of the need for temporary variables. Consider, for example,
the machine code in Fig. 5.17, in which the use of only one register (register A)
was sufficient to handle six of the eight intermediate results (i ;) in Fig. 5.18.

Of course, there are rarely as many registers available as we would like to
use. The problem then becomes one of selecting which register value to
replace when it is necessary to assign a register for some other purpose. One
reasonable approach is to scan the program for the next point at which each
register value would be used. The value that will not be needed for the longest
time is the one that should be replaced. If the register that is being reassigned
contains the value of some variable already stored in memory, the value can
simply be discarded. Otherwise, this value must be saved using a temporary
variable. This is one of the functions performed by the GETA procedure dis-
cussed in Section 5.1.4, using the temporary variables Ti.

In making and using register assignments, a compiler must also consider
the control flow of the program. For example, quadruple 1 in Fig. 5.18 assigns
the value 0 to SUM. This value might be retained in some register for later use.
When SUM is next used as an operand in quadruple 7, it might appear that its
value can be taken directly from the register; however, this is not necessarily
the case. The] operation in quadruple 14 jumps to quadruple 4. If control
passes to quadruple 7 in this way, the value of SUM may not be in the desig-
nated register. This would happen, for example, if the register were reassigned
to hold the value of i, in quadruple 12. Thus the existence of Jump instructions
creates difficulty in keeping track of register contents.

One way to deal with this problem is to divide the program into basic blocks.
A basic block is a sequence of quadruples with one entry point, which is at the
beginning of the block, one exit point, which is at the end of the block, and no
jumps within the block. In other words, each quadruple that is the target of a
jump, or that immediately follows a quadruple that specifies a jump, begins a
new basic block. Since procedure calls can have unpredictable effects on register
contents, a CALL operation is also usually considered to begin a new basic block.
The assignment and use of registers within a basic block can follow the method

273

274

System Software

previously described. However, when control passes from one basic block to
another, all values currently held in registers are saved in temporary variables.
Figure 5.19 shows the division of the quadruples from Fig. 5.18 into basic
blocks. Block A contains quadruples 1-3; block B contains quadruple 4, and so
on. Figure 5.19 also shows a representation of the control flow of the program.
An arrow from block X to block Y indicates that control can pass directly from
the last quadruple of X to the first quadruple of Y. (Within a basic block, of
course, control must pass sequentially from one quadruple to the next.) This
kind of representation is called a flow graph for the program. More sophisti-
cated code-optimization techniques can analyze a flow graph and perform
register assignments that remain valid from one basic block to another.
Another possibility for code optimization involves rearranging quadruples
before machine code is generated. Consider, for example, the quadruples in

‘Fig. 5.20(a). These are essentially the same as quadruples 17-20 in Fig. 5.18; they

correspond to source statement 14 of the program in Fig. 5.1. Figure 5.20(a)
shows a typical generation of machine code from these quadruples, using only
a single register (register A). This is the same as the code shown for source
statement 14 in Fig. 5.17.

Note that the value of the intermediate result i, is calculated first and
stored in temporary variable T1. Then the value of i, is calculated. The third
quadruple in this series calls for subtracting the value of i, from i,. Since i, has
just been computed, its value is available in register A; however, this does no
good, since the first operand for a — operation must be in the register. It is nec-
essary to store the value of i, in another temporary variable, T2, and then load
the value of i, from T1 into register A before performing the subtraction.

A: (1)=(3)

) 4
B: (4)

v

C: (5)-(14)

D: (15)—(20)

A
E: (21)-(23)

Figure 5.19 Basic blocks and flow graph for the quadruples from
Fig. 5.18.

DIV SUMSQ #100
* MEAN MEAN
- i, i,
= i,
LDA SUMSQ
DIV #100
STA Tl
LDA MEAN
MUL MEAN
STA T2
LDA T1
SUB T2
STA VARIANCE
(a)
* MEAN MEAN
DIV SUMSQ #100
B i 1 i 2
= i3
LDA MEAN
MUL MEAN
STA T1
LDA SUMSQ
DIV #100
SUB T1
STA VARIANCE
(b)

Compilers

VARIANCE

Figure 5.20 Rearrangement of quadruples for code optimization.

With a little analysis, an optimizing compiler could recognize this situa-
tion and rearrange the quadruples so the second operand of the subtraction
is computed first. This rearrangement is illustrated in Fig. 5.20(b). The first
two quadruples in the sequence have been interchanged. The resulting
machine code requires two fewer instructions and uses only one temporary

275

276

System Software

variable instead of two. The same technique can be applied to rearrange
quadruples that calculate the operands of a DIV operation or any other oper-
ation for which the machine code requires a particular placement of
operands.

Other possibilities for machine-dependent code optimization involve tak-
ing advantage of specific characteristics and instructions of the target machine.
For example, there may be special loop-control instructions or addressing
modes that can be used to create more efficient object code. On some comput-
ers there are high-level machine instructions that can perform complicated
functions such as calling procedures and manipulating data structures in a sin-
gle operation. Obviously the use of such features, when possible, can greatly
improve the efficiency of the object program.

Some machines have a CPU that is made up of several functional units. On
such computers, the order in which machine instructions appear can affect the
speed of execution. Consecutive instructions that involve different functional
units can sometimes be executed at the same time. An optimizing compiler for
such a machine could rearrange object code instructions to take advantage of
this property. For examples and references, see Aho et al. (1988).

5.3 MACHINE-INDEPENDENT COMPILER FEATURES

In this section we briefly describe some common compiler features that are
largely independent of the particular machine being used. As in the preceding
section, we do not attempt to give full details of the implementation of these
features. Such details may be found in the references cited.

Section 5.3.1 describes methods for handling structured variables such as
arrays. Section 5.3.2 continues the discussion of code optimization begun in
Section 5.2.2. This time, we are concerned with machine-independent tech-
niques for optimizing the object code.

In the compiler design described in Section 5.1, we dealt only with simple
variables that were permanently assigned to storage locations within the
object program. Section 5.3.3 describes some alternative ways of performing
storage allocation for the compiled program. Section 5.3.4 discusses the prob-
lems involved in compiling a block-structured language and indicates some
possible solutions for these problems.

5.3.1 Structured Variables

In this section we briefly consider the compilation of programs that use structured
variables such as arrays, records, strings, and sets. We are primarily concerned

Compilers

with the allocation of storage for such variables and with the generation of code
to reference them. These issues are discussed in a moderate amount of detail for
arrays. The same principles can also be applied to the other types of structured
variables. Further details concerning these topics can be found in a number of
textbooks on compilers, such as Aho et al. (1988).

Consider first the Pascal array declaration

A : ARRAY[1..10] OF INTEGER

If each INTEGER variable occupies one word of memory, then we must clearly
allocate ten words to store this array. More generally, if an array is declared as

ARRAY[/..u] OF INTEGER

then we must allocate u — I + 1 words of storage for the array.
Allocation for a multi-dimensional array is not much more difficult.
Consider, for example, the two-dimensional array

B : ARRAY[0..3, 1..6] OF INTEGER

Here the first subscript can take on four different values (0-3), and the second
subscript can take on six different values. We need to allocate a total of 4 * 6 = 24
words to store the array. In general, if the array declaration is

ARRAY [/

u,, I,..u,] OF INTEGER

1071’

then the number of words to be allocated is given by
(=1, + 1) (u, =1, + 1)

For an array with n dimensions, the number of words required is a product of
n such terms.

When we consider the generation of code for array references, it becomes
important to know which array element corresponds to each word of allocated
storage. For one-dimensional arrays, there is an obvious correspondence. In
the array A previously defined, the first word would contain A[1], the second
word would contain A[2], and so on. For higher-dimensional arrays, however,
the choice of representation is not as clear.

Figure 5.21 shows two possible ways of storing the previously defined
array B. In Fig. 5.21(a), all array elements that have the same value of the first
subscript are stored in contiguous locations; this is called row-major order. In
Fig. 5.21(b), all elements that have the same value of the second subscript are

277

278

System Software

0203

0.4

05(0611,1|12|13]14]115[16]|21|22]|23|24|25[26(3.1/32]33|34|35{36

JL I\ JL)

Row 0

Row 1 Row 2 Row 3

(a)

0.1

1.1] 21

3.1

02(12]22]32|03|13|23[33/04|14]24]34|05]|15/25(35/06]|16|26]3.,6

J JL JL J — |

CoIJmn 1

— ~

CoIJmn 2 ColJmn 3 Colu'mn 4 Column 5 Coiumn 6

(b)

Figure 5.21 Storage of B : ARRAY[0..3, 1..6] in (a) row-major order
and (b) column-major order.

stored together; this is called column-major order. Another way of looking at
this is to scan the words of the array in sequence and observe the subscript
values. In row-major order, the rightmost subscript varies most rapidly; in
column-major order, the leftmost subscript varies most rapidly. These concepts
can be generalized easily to arrays with more than two subscripts.

Compilers for most high-level languages store arrays using row-major
order; this is the order we assume in the following discussions. For historical
reasons, however, most FORTRAN compilers store arrays in column-major
order.

To refer to an array element, we must calculate the address of the refer-
enced element relative to the base address of the array. For a typical computer,
the compiler would generate code to place this relative address in an index
register. Indexed addressing would then be used to access the desired array
element. In the following discussion we assume the base address is the
address of the first word allocated to store the array. For a discussion of other
possibilities, see Aho et al. (1988). '

Consider first the one-dimensional array

A : ARRAY[1..10] OF INTEGER

and suppose that a statement refers to array element A[6]. There are five array
elements preceding A[6]; on a SIC machine, each such element would occupy
3 bytes. Thus the address of A[6] relative to the starting address of the array is
givenbv 5*3 =15.

If an array reference involves only constant subscripts, the relative address
calculation can be performed during compilation. If the subscripts involve
variables, however, the compiler must generate object code to perform this cal-
culation during execution. Suppose the array declaration is

Compilers

A : ARRAYI[!/..u] OF INTEGER

and each array element occupies w bytes of storage. If the value of the sub-
script is s, then the relative address of the referenced array element A[s] is
given by

w*(s-1)

The generation of code to perform such a calculation is illustrated in
Fig. 5.22(a). The notation Ali,] in quadruple 3 specifies that the generated
machine code should refer to A using indexed addressing, after having placed
the value of i, in the index register.

For multi-dimensional arrays, the generation of code depends on whether
row-major or column-major order is used to store the array. We assume row-
major order. Figure 5.21(a) illustrates the storage of the array

B : ARRAY [0..3, 1..6] OF INTEGER

in row-major order. Consider first the array element B[2,5]. If we start at the
beginning of the array, we must skip over two complete rows (row 0 and row 1)
before arriving at the beginning of row 2 (i.e., element B[2,1]). Each such row
contains six elements, so this involves 2 * 6 = 12 array elements. We must also
skip over the first four elements in row 2 to arrive at B[2,5]. This makes a total
of 16 array elements between the beginning of the array and element B[2,5]. If
each element occupies 3 bytes, then B[2,5] is located at relative address 48
within the array.
More generally, suppose the array declaration is

B : ARRAY [l,..u,, l,..u,] OF INTEGER

2]
and we wish to refer to an array element specified by subscripts having values
s, and s,. The relative address of B[s,,s,] is given by

w*l(s,=1) *(uy=l,+ 1) +(s,-1,)]

Figure 5.22(b) illustrates the generation of code to perform such an array refer-
ence. You should examine this set of quadruples carefully to be sure you
understand the calculations involved.

The methods and formulas discussed above can easily be generalized to
higher-dimensional arrays. For details, see Aho et al. (1988). '

The symbol-table entry for an array usually specifies the type of the ele-
ments in the array, the number of dimensions declared, and the lower and
upper limit for each subscript. This information is sufficient for the compiler to

279

280 System Software

A : ARRAY [1..10] OF INTEGER

A[I] =5

(1) 1 o#m i

(2) i #3 i,

(3) = #5 ali,)
(a)

B : ARRAY [0..3,1..6] OF INTEGER

B[I,J] := 5

(1) * I #6 i,

2) - J #1 i,

(3) o+ i i, i,

(4) = i, #3 i,

(5) = #5 Bli,]
(b)

Figure 5.22 Code generation for array references.

generate the code required for array references. In some languages, however,
the required information may not be known at compilation time. For example,
FORTRAN 90 provides dynamic arrays. Using this feature, a two-dimensional
array could be declared as

INTEGER, ALLOCABLE, ARRAY (:,:) :: MATRIX

Compilers

This specifies that MATRIX is an array of integers that can be allocated
dynamically. The allocation can be accomplished by a statement like

ALLOCATE (MATRIX(ROWS,COLUMNS))

where the variables ROWS and COLUMNS have previously been assigned
values.

Since the values of ROWS and COLUMNS are not known at compilation
time, the compiler cannot directly generate code like that in Fig. 5.22. Instead,
the compiler creates a descriptor (often called a dope vector) for the array. This
descriptor includes space for storing the lower and upper bounds for each
array subscript. When storage is allocated for the array, the values of these
bounds are computed and stored in the descriptor. The generated code for an
array reference uses the values from the descriptor to calculate relative
addresses as required. The descriptor may also include the number of dimen-
sions for the array, the type of the array elements, and a pointer to the begin-
ning of the array. This information can be useful if the allocated array is
passed as a parameter to another procedure.

The issues discussed for arrays also arise in the compilation of other struc-
tured variables such as records, strings, and sets. The compiler must provide
for the allocation of storage for the variable; it must store information concern-
ing the structure of the variable, and use this information to generate code to
access components of the structure; and it must construct a descriptor for situ-
ations in which the required information is not known at compilation time.
For further discussion of these issues as they relate to specific types of struc-
tured variables, see Aho et al. (1988) and Fischer and LeBlanc (1988).

5.3.2 Machine-Independent Code Optimization

In this section we discuss some of the most important types of ...achine-
independent code optimization. As in the previous sections, we do not
attempt to give the full details of any of these techniques. Instead, we give an
intuitive verbal description and illustrate the main concepts with examples.
Algorithms and further details concerning these methods can be found in
Aho et al. (1988). We assume the source program has already been translated
into a sequence of quadruples like those introduced in Section 5.2.1.

One important source of code optimization is the elimination of common
subexpressions. These are subexpressions that appear at more than one point in
the program and that compute the same value. Consider, for example, the
statements in Fig. 5.23(a). The term 2*] is a common subexpression. An opti-
mizing compiler should generate code so that this multiplication is performed
only once and the result is used in both places.

281

282 System Software

X,Y : ARRAY[1..10,1..10] OF INTEGER

FOR I := 1 TO 10 DO

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

X[I,2*J-1] := Y[I,2*J]

=

#10
#1
#10

iy

#1
#1

*
F- e R H O 3

NS W

#3
#1
#10

|
B e o e b
()

[\ X: 3
[}

#1

11
#3 -

B oo M
"N 5

13]

I
(el S SR RO
= —
'_l

-
-

=

#10
#1
#10

JGT

* %

* 4+ ok + |

H* HHH
BN e N e W NR

]

He 3 W e e e He e
= o—
[
,_.
w
—

=
'S

_—
)
~

BV @ NN s W N PN
(=]
o
st

=
[

T O O e e e e N e el
N

>
[Pae

J
L

(ST
-
>

[

(b)

[
[2))

He e He e e P~
[N

[N
ot AT LI NV
N

X e e
g
w

X(1,]

~H P
M K

(c)

{loop initialization}

{subscript calculation

{subscript calculation

{assignment operation}
{end of loop}

{next statement}

{loop initialization}

{subscript calculation

{subscript calculation

{assignment operation}
{end of loop}

{next statement}

for X}

for Y}

for X}

for Y}

Figure 5.23 Code optimization by elimination of common subexpres-
sions and removal of loop invariants.

Compilers

(1) * #2 J i, {computation of invariants}
(2) - i, #1 i,

3y -~ i, #1 i,

(4) $= #1 I {loop initialization}

(5) JGT I #10 (16)

(6) - I #1 i, {subscript calculation for X}
(7) * i #10 i,

(8) + i, i, i,

(9) * i, #3 i,

(10) + i, i, i, {subscript calculation for Y}
(11 * i, #3 i,

(12) 1= Y[i,] X[i,] {assignment operation}

(13) + #1 I i, {end of loop}

(14) 1= i, I

(15) J (5)

(16) {next statement}

(d)
Figure 5.23 (cont’d)

Common subexpressions are usually detected through the analysis of an
intermediate form of the program. Such an intermediate form is shown in
Fig. 5.23(b). If we examine this sequence of quadruples, we see that quadruples 5
and 12 are the same except for the name of the intermediate result produced.
Note that the operand] is not changed in value between quadruples 5 and 12.
It is not possible to reach quadruple 12 without passing through quadruple 5
first because the quadruples are part of the same basic block. Therefore,
quadruples 5 and 12 compute the same value. This means we can delete
quadruple 12 and replace any reference to its result (i,,) with a reference to i,
the result of quadruple 5. This modification eliminates the duplicate calcula-
tion of 2*], which we identified previously as a common subexpression in the
source statement.

After the substitution of i, for i, is performed, quadruples € and 13 are the
same, except for the name of the result. Thus we can remove quadruple 13 and
substitute i, for i, wherever it is used. Similarly, quadruples 10 and 11 can be
removed because they are equivalent to quadruples 3 and 4.

The result of applying this technique is shown in Fig. 5.23(c). The quadruples
have been renumbered in this figure. However, the intermediate result names i;
have been left unchanged, except for the substitutions just described, to make the
comparison with Fig. 5.23(b) easier. Note that the total number of quadruples has
been reduced from 19 to 15. Each of the quadruple operations used here will
probably take approximately the same length of time to execute on a typical
machine, so there should be a corresponding reduction in the overall execution
time of the program.

283

284

System Software

Another common source of code optimization is the removal of loop invari-
ants. These are subexpressions within a loop whose values do not change from
one iteration of the loop to the next. Thus their values can be computed once,
before the loop is entered, rather than being recalculated for each iteration.
Because most programs spend most of their running time in the execution of
loops, the time savings from this sort of optimization can be highly significant.
We assume the existence of algorithms that can detect loops by analyzing the
control flow of the program. One example of such an algorithm is the method
for constructing a program flow graph that is described in Section 5.2.2.

An example of a loop-invariant computation is the term 2*J in Fig. 5.23(a)
[see quadruple 5 of Fig. 5.23(c)]. The result of this computation depends only on
the operand], which does not change in value during the execution of the loop.
Thus we can move quadruple 5 in Fig. 5.23(c) to a point immediately before the
loop is entered. A similar argument can be applied to quadruples 6 and 7.

Figure 5.23(d) shows the sequence of quadruples that results from these
modifications. The total number of quadruples remains the same as in
Fig. 5.23(c); however, the number of quadruples within the body of the loop
has been reduced from 14 to 11. Each execution of the FOR statement in
Fig. 5.23(a) causes 10 iterations of the loop, which means the total number of
quadruple operations required for one execution of the FOR is reduced from
141 to 114.

Our modifications have reduced the total number of quadruple operations
for one execution of the FOR from 181 [Fig. 5.23(b)] to 114 [Fig. 5.23(d)], which
saves a substantial amount of time. There are methods for handling common
subexpressions and loop invariants that are considerably more sophisticated
than the techniques we used here. As might be expected, such methods can
produce more highly optimized code. For examples and discussions of these,
see Aho et al. (1988).

Some optimization, of course, can be obtained by rewriting the source pro-
gram. For example, the statements in Fig. 5.23(a) could have been written as

Tl :=2 * J;

T2 :=T1 - 1;

FOR I := 1 TO 10 DO
X[I, T2} := Y[I,T1]

However, this would achieve only a part of the benefits realized by the
optimization process just described. The rest of the optimizations are related to
the process of calculating a relative address from subscript values; these details
are inaccessible to the source programmer. For example, the optimizations
involving quadruples 3, 4, 10, and 11 in Fig. 5.23(b) could not be achieved with
any rewriting of the source statement. It could also be argued that the original

Compilers 285

statements in Fig. 5.23(a) are preferable because they are clearer than the modi-
fied version involving T1 and T2. An optimizing compiler should allow the
programmer to write source code that is clear and easy to read, and it should
compile such a program into machine code that is efficient to execute.

Another source of code optimization is the substitution of a more efficient
operation for a less efficient one. Consider, for example, the FORTRAN program
segment in Fig. 5.24(a). This DO loop creates a table that contains the first 20
powers of 2. In each iteration of the loop, the constant 2 is raised to the power 1.
Figure 5.24(b) shows a representation of these statements as a series of quadru-
ples. Exponentiation is represented with the operation EXP. At the machine-code
level, EXP might involve either a loop that performs a series of multiplications,
or a call to a subroutine that uses logarithms to arrive at the result.

DO 10 I = 1,20
10 TABLE(I) = 2**I

(a)

(1) = #1 I {loop initialization}
(2) EXP #2 I i, {calculation of 2**I}
(3) - I #1 i, {subscript calculation}
4y > i, #3 i,
(5) 1= i, TABLE[1,] {assignment operation}
(6) + I #1 i, {end of loop} ‘
(7) 1= i, I
(8) JLE I #20 (2)

(b)
(1) = #1 i, {initialize temporaries}
(2) = #(-3) i,
(3) 1= #1 I {loop initialization}
(4) * i #2 i, {calculation of 2**I}
(5) + i, #3 i, {subscript calculation}
(6) = i TABLE[1,] {assignment operation}
(7) + I #1 i, {end of loop}
(8) 1= i, I
(9) JLE I #20 (4)

(©)

Figure 5.24 Code optimization by reduction in strength of operations.

286

System Software

On closer examination, we can see that there is a more efficient way to perform
the computation. For each iteration of the loop, the value of I increases by 1.
Therefore, the value of 2**I for the current iteration can be found by multiplying
the value for the previous iteration by 2. Clearly this method of computing 2*1 is
much more efficient than performing a series of multiplications or using a logarith-
mic technique. Such a transformation is called reduction in strength of an operation.

A similar transformation can be applied in the calculation of the relative
address for the array element TABLE(I). Assuming that each array element
occupies one word, a SIC object program would calcu! te this displacement as
3 * (I- 1). This calculation appears in quadruples 3 and 4 of Fig. 5.24(b). Thus
the object program would need to perform one multiplication for each array
reference.

The same sort of reduction in strength can be applied to this situation.
Each iteration of the loop refers to the next array element in sequence, so the
calculation of the required displacement can be accomplished by adding 3 to
the previous displacement. If addition is faster than multiplication on the tar-
get machine, this reduction in strength will result in more efficient object code.

Figure 5.24(c) shows a modification of the quadruples from Fig. 5.24(b)
that implements these two reductions in strength. An algorithm for perform-
ing this sort of transformation can be found in Aho et al. (1988). As in our pre-
vious examples, a part of this optimization could have been performed at
the source-code level. However, the strength reduction in the subscript
calculation process could not be accomplished by the programmer, who has
no access to the details of code generation for array references.

There are a number of other possibilities for machine-independent code
optimization. For example, computations whose operand values are known at
compilation time can be performed by the compiler. This optimization is
known as folding. Other optimizations include converting a loop into straight-
line code (loop unrolling) and merging of the bodies of loops (loop jamming). For
details on these and other optimization techniques, see Aho et al. (1988).

5.3.3 Storage Allocation

In the compilation scheme presented in Section 5.1, all programmer-defined
variables were assigned storage locations within the object program as their
declarations were processed. Temporary variables, including the one used to
save the return address, were also assigned fixed addresses within the pro-
gram. This simple type of storage assignment is usually called static allocation.
It is often used for languages that do not allow the recursive use of procedures
or subroutines, and do not provide for the dynamic allocation of storage during
execution.

Compilers

If procedures may be called recursively, static allocation cannot be used.
Consider, for example, Fig. 5.25. In Fig. 5.25(a), the program MAIN has been
called by the operating system or the loader (invocation 1). The first action
taken by MAIN is to store its return address from register L at a fixed location
RETADR within MAIN. In Fig. 5.25(b), MAIN has called the procedure SUB
(invocation 2). The return address for this call has been stored at a fixed loca-
tion within SUB. If SUB now calls itself recursively, as in Fig. 5.25(c), a problem
occurs. SUB stores the return address for invocation 3 into RETADR from reg-
ister L. This destroys the return address for invocation 2. As a result, there is
no possibility of ever making a correct return to MAIN.

A similar difficulty occurs with respect to any variables used by SUB.
When the recursive call is made, variables within SUB may be set to new val-
ues; this destroys the previous contents of these variables. However, these pre-
vious values may be needed by invocation 2 of SUB after the return from the
recursive call. This is the same problem mentioned in Section 4.3.1 in our dis-
cussion of recursive macro expansion.

Obviously it is necessary to preserve the previous values of any variables
used by SUB, including parameters, temporaries, return addresses, register

System “'ﬂ' —— System 4--1I — System 4-—-;
| |
1
M MAIN : M MAIN l M MAIN
Lp : Ly : Ly
: — Call SUB ﬂ-rﬁl —{ Call SUB
| 11
| | |
| I
RETADR o RETADR | : RETADR |
@ I @
|
|
|
|
suB (suB
) I
| ‘3’|:
| Call SUB 4--:
| |
| I
RETADR }——- RETADR |-

(a) (b) (c)

Figure 5.25 Recursive invocation of a procedure using static storage
allocation.

287

288 System Software

save areas, etc., when the recursive call is made. This is usually accomplished
with a dynamic storage allocation technique. Each procedure call creates an
activation record that contains storage for all the variables used by the proce-
dure. If the procedure is called recursively, another activation record is
created. Each activation record is associated with a particular invocation of the
procedure, not with the procedure itself. An activation record is not deleted
until a return has been made from the corresponding invocation. The starting
address for the current activation record is usually contained in a base register,
which is used by the procedure to address its variables. In this way, the values
of variables used by different invocations of a procedure are kept separate
from one another.

Activation records are typically allocated on a stack, with the current record
at the top of the stack. This process is illustrated in Fig. 5.26. In Fig. 5.26(a),
which corresponds to Fig. 5.25(a), the procedure MAIN has been called; its
activation record appears on the stack. The base register B has been set to
indicate the starting address of this current activation record. The first word in

Variables
——- System 4-----: for SUB
i
m MAIN :
> '.--:-—-- RETADR
— CalisuB |ed ’ NEXT fo
:B-. PREV
|
{
2 .
Variabl I Variables
System(—--‘ for M Al’; = for MAIN
1 | . I
(1) MAIN ’ sus :
t-4 RETADR Ly L——-d RETADR
NEXT o NEXT e
B 0 0 —
Stack Stack
() (b)

Figure 5.26 Recursive invocation of a procedure using automatic stor-
age allocation.

Compilers 289

an activation record would normally contain a pointer PREV to the previous
record on the stack. Since this record is the first, the pointer value is null.
The second word of the activation record contains a pointer NEXT to the first
unused word of the stack, which will be the starting address for the next
activation record created. The third word contains the return address for this
invocation of the procedure, and the remaining words contain the values of
variables used by the procedure.

[
Variables
p——= System 1———1 for SUB
: |
M MAIN |
N : === RETADR
' |
—{ Call SUB (& = | NEXT |
Lo
PREV 4
R “
||
@) [
| : { Variables Variables
: Dl for SUB — System ¢ - — -+ for SUB
. Pt
suB 1 : : M MAIN
1
E i L—4~4———{ RETADR > :--{-——-ﬁ RETADR
]
@ Call SUB 4._;.;..1 NEXT bl —{ cansus |ed ! NEXT |
l -
PREV |= B8-»{ PREV
I o -
|
| |
| Variables) = Variables
| for MAIN | for MAIN
| : |
: suB :
L———- RETADR Ly L——-| RETADR
NEXT |- NEXT |
0 < 0 ——
Stack Stack
(c) (d)

Figure 5.26 (cont'd)

290

System Software

In Fig. 5.26(b), MAIN has called the procedure SUB. A new activation
record has been created on the top of the stack, with register B set to indicate
this new current record. The pointers PREV and NEXT in the two records have
been set as shown. In Fig. 5.26(c), SUB has called itself recursively; another
activation record has been created for this current invocation of SUB. Note that
the return addresses and variable values for the two invocations of SUB are
kept separate by this process. '

When a procedure returns to its caller, the current activation record (which
corresponds to the most recent invocation) is deleted. The pointer PREV in the
deleted record is used to reestablish the previous activation record as the cur-
rent one, and execution continues. Figure 5.26(d) shows the stack as it would
appear after SUB returns from the recursive call. Register B has been reset to
point to the activation record for the previous invocation of SUB. The return
address and all the variable values in this activation record are exactly the
same as they were before the recursive call.

This technique is often referred to as automatic allocation of storage to dis-
tinguish it from other types of dynamic allocation that are under the control of
the programmer. When automatic allocation is used, the compiler must gener-
ate code for references to variables using some sort of relative addressing. In
our example the compiler assigns to each variable an address that is relative to
the beginning of the activation record, instead of an actual location within the
object program. The address of the current activation record is, by convention,
contained in register B, so a reference to a variable is translated as an instruc-
tion that uses base relative addressing. The displacement in this instruction is
the relative address of the variable within the activation record.

The compiler must also generate additional code to manage the activation
records themselves. At the beginning of each procedure there must be code to
create a new activation record, linking it to the previous one and setting the
appropriate pointers as illustrated in Fig. 5.26. This code is often called a
prologue for the procedure. At the end of the procedure, there must be code to
delete the current activation record, resetting pointers as needed. This code is
often called an epilogue.

When automatic allocation is used, storage is assigned to all variables used
by a procedure when the procedure is called. Other types of dynami¢ storage
allocation allow the programmer to specify when storage is to be assigned. In
FORTRAN 90, for example, the statement

ALLOCATE (MATRIX(ROWS, COLUMNS))

allocates storage for a dynamic array MATRIX with the specified dimensions.
The statement

DEALLOCATE (MATRIX)
releases the storage assigned to MATRIX by a previous ALLOCATE. . .

Compilers

Another type of dynamic storage allocation is found in Pascal. The
statement

NEW (P)

allocates storage for a variable and sets the pointer P to indicate the variable
just created. The type of the variable created is specified by the way P is
declared in the program. The program refers to the created variable by using
the pointer P. The statement

DISPOSE (P)

releases the storage that was previously assigned to the variable pointed to by
P. A similar feature is available in C. The function

MALLOC (SIZE)

“allocates a block of storage of the specified size, and returns a pointer to it. The
function

FREE(P)

frees the storage indicated by the pointer P, which was returned by a previous
MALLQC.

A variable that is dynamically allocated in this way does not occupy a
fixed logation in an activation record, so it cannot be referenced directly using
base relative addressing. Such a variable is usually accessed using indirect
addressing through a pointer variable P. Since P does occupy a fixed location
in the activation record, it can be addressed in the usual way.

In the preceding discussions we have not described the mechanism by
which storage is allocated for a variable. One approach is to let the operating
system handle all storage management. A NEW or MALLOC statement would
be translated into a request to the operating system for an area of storage of
the required size. Another method is to handle the required allocation through
a run-time support procedure associated with the compiler. With this method,
a large block of free storage called a heap is obtained from the operating sys-
tem at the beginning of the program. Allocations of storage from the heap are
managed by the run-time procedure. In some systems, it is not even necessary
for the programmer to free storage explicitly. Instead, a run-time garbage collec-
tion procedure scans the pointers in the program and reclaims areas from the
heap that are no longer being used. Discussion and evaluations of such mem-
ory management techniques can be found in Sebesta (1996) and Lewis and
Denenberg (1991).

Dynamic storage allocation, as discussed in this section, provides another
example of delayed binding. The association of an address with a variable is

291

292

System Software

made when the procedure is executed, not when it is compiled or loaded. This
delayed binding allows more flexibility in the use of variables and procedures.
However, it also requires more overhead because of the creation of activation
records and the use of indirect addressing. (Similar observations were made at
the end of Section 3.4.2 with respect to dynamic linking.)

5.3.4 Block-Structured Languages

In some languages a program can be divided into units called blocks. A block is
a portion of a program that has the ability to declare its own identifiers. This
definition of a block is also met by units such as procedures and functions in
Pascal. In this section we consider some of the issues involved in compiling
and executing programs written in such block-structured languages.

Figure 5.27(a) shows the outline of a block-structured program in a Pascal-
like language. Each procedure corresponds to a block. In the following discus-
sion, therefore, we use the terms procedure and block interchangeably. Note that
blocks may be nested within other blocks. For example, procedures B and D
are nested within procedure A, and procedure C is nested within procedure B.
Each block may contain a declaration of variables, as shown. A block may also
refer to variables that are defined in any block that contains it, provided the
same names are not redefined in the inner block.

Consider, for example, the INTEGER variables X, Y, and Z that are declared
in procedure A on line 2. Procedure B contains declarations of X and Y as REAL
variables on line 4. Within procedure B, a use of the name X refers to the REAL
variable declared within B. However, a use of the name Z refers to the INTE-
GER variable declared by A because the name Z is not redefined within B.
Similarly, within procedure C the name W refers to the variable declared by C;
the names X and Y refer to the variables declared by B; and the name Z tefers to
the variable declared by A. Variables cannot be used outside the block ih which
they are declared. For example, the name W cannot be referred to outside of
procedure B, and V cannot be referred to outside of procedure C.

In compiling a program written in a block-structured language, it 1s conve-
nient to number the blocks as shown in Fig. 5.27(a). As the begmmng of each
new block is recognized, it is assigned the next block number in sequence. The
compiler can then construct a table that describes the block structure, as illus-
trated in Fig. 5.27(b). The block-level entry gives the nesting depth for each
block. The outermost block has a level number of 1, and each other block has a
level number that is one greater than that of the surrounding block.

Since a name can be declared more than once in a program (by different
blocks), each symbol-table entry for an identifier must contain the number of
the declaring block. A declaration of an identifier is legal if there has been no

Compilers 293

1’ PROCEDURE A:
2 VAR X,Y,Z : INTEGER;
L3 PROCEDURE B;
VAR W,X,Y : REAL;.
PROCEDURE C;
6 VAR V,W : INTEGER:
: 2
3
7 END {C};
. 1
8 END {B}:
9 PROCEDURE D;
10 VAR X,Z : CHAR;
4
11 END {D}:
12 END {A})

(a)

Block Block Block Surrounding

name number level block
A 1 1 —
B 2 2 1
C 3 3 2
D 4 2 1
(b)

Figure 5.27 Nesting of blocks in a source program.

294

System Software

previous declaration of that identifier by the current block, so there can be sev-
eral symbol-table entries for the same name. The entries that represent decla-
rations of the same name by different blocks can be linked together in the
symbol table with a chain of pointers.

When a reference to an identifier appears in the source program, the com-
piler must first check the symbol table for a definition of that identifier by the
current block. If no such definition is found, the compiler looks for a definition
by the block that surrounds the current one, then by the block that surrounds
that, and so on. If the outermost block is reached without finding a definition
of the identifier, then the reference is an error.

The search process just described can easily be implemented within a sym-
bol table that uses hashed addressing. The hashing function is used to locate
one definition of the identifier. The chain of definitions for that identifier is
then searched for the appropriate entry. There are other symbol-table organi-
zations that store the definitions of identifiers according to the nesting of the
blocks. that define them. This kind of structure can make the search for the
proper definition more efficient. See, for example, Aho et al. (1988).

Most block-structured languages make use of automatic storage allocation,
as described in Section 5.3.3. That is, the variables that are defined by a block
are stored in an activation record that is created each time the block is entered.
If a statement refers to a variable that is declared within the current block, this
variable is present in the current activation record, so it can be accessed in the
usual way. However, it is also possible for a statement to refer to a variable
that is declared in some surrounding block. In that case, the most recent acti-
vation record for that block must be located to access the variable.

One common method for providing access to variables in surrounding
blocks uses a data structure called a display. The display contains pointers to
the most recent activation records for the current block and for all blocks that
surround the current one in the source program. When a block refers to a vari-
able that is declared in some surrounding block, the generated object code
uses the display to find the activation record that contains this variable.

The use of a display is illustrated in Fig. 5.28. We assume that procedure A
has been invoked by the system, A has then called procedure B, and B has
called procedure C. The resulting situation is shown in Fig. 5.28(a). The stack
contains activation records for the invocations of A, B, and C. The display con-
tains pointers to the activation records for C and for the surrounding blocks
(A and B).

Now let us assume procedure C calls itself recursively. Another activation
record for C is created on the stack as a result of this call. Any reference to a
variable declared by C should use this most recent activation record; the dis-
play pointer for C is changed accordingly. Variables that correspond to the pre-
vious invocation of C are not accessible for the moment, so there is no display
pointer to this activation record. This situation is illustrated in Fig. 5.28(b).

Compilers 295

Activation ¢

record for C
Acﬁvation < Activation
record for C record for C
Activation Activation
record for B | c record for B |4 | c
Activation |, —B Activation 8
recard for A ‘—I___ A record for A [¢ l A
Stack Display Stack Display
(a) ®
Activation ¢
record for B
Acgi\‘/atibn ¢ Activation
recard for D record for D
Activation Activation
record for C record for C
Activation Activation
record for C . record for C
Activation Activation
record for B record for B
Activation D Activation B
record for A [¢_[— A record for A [__ [A
Stack Display Stack Display
(¢) (d)

Figure 5.28 Use of display for procedures in Fig. 5.27.

System Software

Suppose now that procedure C calls D. (This is allowed because the identi-
fier D is defined in procedure A, which contains C. For simplicity, we have
assumed that no special “forward call” declarations are required.) The result-
ing stack and display are shown in Fig. 5.28(c). An activation record for D has
been created in-the usual wayv and added to the stack. Note, however, that the
display now contains only two pointers: one each to the activation recérds for
D and A. This is because procedure D cannot refer to variables in B or C,
except through parameters that are passed to it, even though it was called
from C. According to the rules for the scope of names in a block-structured
language, procedure D can refer only to variables that are declared by D or by
some block that contains 1D in the source program (in this case, procedure A).

A similar situation, illustrated in Fig. 5.28(d), occurs if procedure D now
calls B. Procedure B is allowed to refer only to variables declared by either B or
A, which is retlected in the contents of the display. After procedure B returns
to D, the contents of the stack and display will again appear as they were in
Fig. 5.28(c).

It is important to be aware of the difference between the run-time alloca-
tion of variables, as represented by the stack of activation records, and the
rules for referring to variables in the block-structured program, as represented
by the display. You should carefully examine Figs. 5.27 and 5.28 to be sure you
understand why the stack and display appear as they do in each situation.

The compiler for a block-structured language must include code at the
beginning of a block to initialize the display for that block. At the end of the
block, it must include code to restore the previous display contents. For the
details of how this is accomplished, see Aho et al. (1988).

5.4 COMPILER DESIGN OPTIONS

In this section we consider some of the possible alternatives for the design and
construction of a compiler. The discussions in this section are necessarily very
brief. Our purpose is to introduce terms and concepts rather than to glvo
comprehensive discussion of any of these topics.

The compilation scheme presented in Section 5.1 was a simple one-pass
design. Sections 5.2 and 5.3 described many features that usually require more
than one pass to implement. In Section 5.4.1 we briefly discuss the general
question of dividing a compiler into passes, and consider the advantages of
one-pass and multi-pass designs.

Section 5.4.2 discusses interpreters, which execute an intermediate form of
the program instead of translating it into machine code. Section 5.4.3 intro-
duces the related topic of ’-code systems, which compile high-level language
programs into object code for a hypothetical machine.

Compilers

Finally, Section 5.4.4 describes compiler-writing systems, which use software
tools to automate much of the process of compiler construction.

5.4.1 Division into Passes

In Section 5.1 we presented a simple one-pass compilation scheme for a subset
of the Pascal language. In this design, the compiler was driven by the parsing
process. The lexical scanner was called when the parser needed another input
token, and a code-generation routine was invoked as cach language construct
was recognized by the parser. The object code produced was not highly effi-
cient. Most of the code-optimization techniques discussed in Sections 5.2 and 5.3
could not be applied in such a one-pass compiler. However, the compilation
process itself, which required onlv one pass over the program and no interme-
diate code-generation step, was quite efficient.

Not all languages can be translated by such a one-pass compiler. In Pascal,
declarations of variables must appear in the program before the statements
that use these variables. In FORTRAN, declarations may appear at the begin-
ning of the program; any variable that is not declared is assigned characteris-
tics by default. However, in some languages the declaration of an identifier
may appear after it has been used in the program. One-pass compilers must
have the ability to fix up forward references in jump instructions, using tech-
niques like those discussed for one-pass assemblers. Forward references to
data items, however, present a much more serious problem.

Consider, for example, the assignment statement

X:=Y * 12

If all of the variables X, Y, and Z are of type INTEGER, the object code for this
statement might consist of a simple integer multiplication followed by storage
of the result. If the variables are a mixture of REAL and INTEGER types, one
or more conversion operations will need to be included in the object code, and
floating-point arithmetic instructions may be used. Obviously the compiler
cannot decide what machine instructions to generate for this statement unless
information about the operands is available. The statement may even be illegal
for certain combinations of operand tvpes. Thus a language that allows for-
ward references to data items cannot be compiled in one pass.

Some programming languages, because of other characteristics, require
more than two passes to compile. For example Hunter (1981) showed that
ALGOL 68 required at least three passes.

There are a number of tactors that should be considered in deciding
between one-pass and multi-pass compiler designs (assuming, that the language
in question can be compiled in one pass). If speed of compilation is important,

297

298

System Software

a one-pass design might be preferred. For example, computers running
student jobs tend to spend a large amount of time performing compilations.
The resulting object code is usually executed only once or twice for each com-
pilation; these test runs are normally very short. In such an environment,
improvements in the speed of compilation can lead to significant benefits in
system performance and job turnaround time.

If programs are executed many times for each compllatlon, or if
they process large amounts of data, then speed of execution becomes more
important than speed of compilation. In such a case, we might prefer a multi-
pass compiler design that could incorporate sophisticated code-optimization
techniques. Multi-pass compilers are also used when the amount of memory,
or other system resources, is severely limited. The requirements of each
pass can be kept smaller if the work of compilation is divided into several
passes.

Other factors may also influence the design of the compiler. If a compiler is
divided into several passes, each pass becomes simpler and, therefore, easier
to understand, write, and test. Different passes can be assigned to different
programmers and can be written and tested in parallel, which shortens the
overall time required for compiler construction.

For further discussion of the problem of dividing a compiler into passes,
see Hunter (1981) and Aho et al. (1988).

5.4.2 Interpreters

An interpreter processes a source program written in a high-level language,
just as a compiler does. The main difference is that interpreters execute a ver-
sion of the source program directly, instead of translating it into machine code.

An interpreter usually performs lexical and syntactic analysis functions
like those we have described for a compiler, and then translates the source
program into an internal form. Many different internal forms can be used. One
possibility is a sequence of quadruples like those discussed in Section 5.2. It is
even possible to use the original source program itself as the internal form;

_however, it is generally much more efficient to perform some preprocessing of

the program before execution.

After translating the source program into an internal form, the interpreter
executes the operations specified by the program. During this phase, an inter-
preter can be viewed as a set of subroutines. The execution of these subrou-
tines is driven by the internal form of the program. ' :

The process of translating a source program into some internal form is
simpler and faster than compiling it into machine code. However, execution
of the translated program by an interpreter is much slower than execution of

Compilers

the machine code produced by a compiler. Thus an interpreter would not
normally be used if speed of execution is important. If speed of translation is
of primary concern, and execution of the translated program will be short,
- then an interpreter may be a good choice.

The real advantage of an interpreter over a compiler, however, is in the
debugging facilities that can easily be provided. The symbol table, source line
- numbers, and other information from the source program are usually retained by
the interpreter. During execution, these can be used to produce symbolic dumps
of data values, traces of program execution related to the source statements, etc.
Thus interpreters are especially attractive in an educational environment where
the emphasis is on learning and program testing. Discussions of the implementa-
tion of debugging tools in an interpreter can be found in Watt (1993).

Most programming languages can be either compiled or interpreted suc-
cessfully. However, some languages are particularly well suited to the use of
an interpreter. As we have seen, compilers usv:lally generate calls to library
routines to perform functions such as I/O and complex conversion operations.
For some languages, such as SNOBOL and APL, a large part of the compiled
program would consist of calls to such routines. In such cases, an interpreter
might be preferred because of its speed of translation. Most of the execution
time for the translated program would be consumed by the standard library
routines. These routines would be the same, regardless of whether a compiler
or an interpreter were used.

Certain languages also have features that lend themselves naturally to inter-
pretation. For example, in some languages the type of a variable can change dur-
ing the execution of a program. Other languages use dynamic scoping instead of
the more usual static scoping we discussed in Section 5.3.4. With dynamic scoping,
the variables that can be referred to by a function or a subroutine are determined
by the sequence of calls made during execution, not by the nesting of blocks in
the source program. It would be very difficult to compile such languages effi-
ciently and allow for dynamic changes in the types of variables and the scope of
names. These features can be more easily handled by an interpreter, which pro-
vides delayed binding of symbolic variable names to data types and locations.

Further discussions of the construction and use of interpreters can be
found in Watt (1993).

5.4.3 P-Code Compilers

P-code compilers (also called bytecode compilers) are very similar in concept to
interpreters. In both cases, the source program is analyzed and converted into
an intermediate form, which is then executed interpretively. With a P-code com-
piler, however, this intermediate form is the machine language for a hypothetical

299

300

System Software

computer, often called a pseudo-machine or P-machine. The process of using
such a P-code compiler is illustrated in Fig. 5.29. The source program is com-
piled, with the resulting object program being in P-code. This P-code program
is then read and executed under the control of a P-code interpreter.

The main advantage of this approach is portability of software. It is not neces-
sary for the compiler to generate different code for different computers, because
the P-code object programs can be executed on any machine that has a P-code
interpreter. Even the compiler itself can be transported if it is written in the lan-
guage that it compiles. To accomplish this, the source version of the compiler is
compiled into P-code; this P-code can then be interpreted on another computer.
In this way, a P-code compiler can be used without modification on a wide vari-
ety of systems if a P-code interpreter is written for cach different machine.
Although writing such an interpreter is not a trivial task, it is certainly easier than
writing a new compiler for each ditferent machine. The same approach can also
be used to transport other types of system software without rewriting.

The design of a P-machine and the associated P-code is often related to the
requirements of the language being compiled. For example, the P-code for
a Pascal compiler might include single P-instructions that perform array-
subscript calculations, handle the details of procedure entry and exit, and
perform elementary operations on sets. This simplifies the code-generation
process, leading to a smaller and more efficient compiler. In addition, the
P-code object program is often much smaller than a corresponding machine-
code program would be. This is particularly useful on machines with severely
limited memory size.

Source program

P-code

Compile = —— compiler

Object program

(P-code)

P-code

Execute == interpreter

Figure 5.29 Translation and execution using a P-code compiler. 0"

Compilers

Obviously the interpretive execution of a P-code program may be much
slower than the execution of the equivalent machine code. Depending upon the
environment, however, this may not be a problem. Many P-code compilers are
designed for a single user running on a dedicated microcomputer system. In
that case, speed of execution may be relatively insignificant because the limiting
factor in system performance may be the response time and “think time” of the
user. If execution speed is important, some P-code compilers support the use of
machine-language subroutines. By rewriting a small number of commonly used
routines in machine language, rather than P-code, it is often possible to achieve
substantial improvements in performance. Of course, this approach sacrifices
some of the portability associated with the use of P-code compilers.

Section 5.5.2 of this text describes a recently developed P-code corpiler for
the Java language.

5.4.4 Compiler-Compilers

The process of writing a compiler usually involves a great deal of time and
effort. In some areas, particularly the construction of scanners and parsers, it is
possible to perform much of this work automatically. A compiler-compiler is a
software tool that can be used to help in the task of compiler construction.
Such tools are also often called compiler generators or translator-writing systems.

The process of using a typical compiler-compiler is illustrated in Fig. 5.30.
The user (i.e., the compiler writer) provides a description of the language to
be translated. This description may consist of a set of lexical rules for defining
tokens and a grammar for the source language. Some compiler-compilers use
this information to generate a scanner and a parser directly. Others create tables
for use by standard table-driven scanning and parsing routines that are supplied
by the compiler-compiler.

Compiler
Lexical Scanner
rules
et
Compiler-compiler Parser
smantic Code
routines generator

Figure 5.30 Automated compiler construction using a compiler-
compiler.

301

302

System Software

In addition to the description of the source language, the user provides
a set of semantic or code-generation routines. Often there is one such rou-
tine for each rule of the grammar, as we discussed in Section 5.1. This rou-
tine is called by the parser each time it recognizes the language construct
described by the associated rule. However, some compiler-compilers can
parse a larger section of the program before calling a semantic routine. In
that case, an internal form of the statements that have been analyzed, such
as a portion of the parse tree, may be passed to the semantic routine. This
latter approach is often used when code optimization is to be performed.
Compiler-compilers frequently provide special languages, notations, data
structures, and other similar facilities that can be used in the writing of
semantic routines.

The main advantage of using a compiler-compiler is, of course, ease of
compiler construction and testing. The amount of work required from the user
varies considerably from one compiler-compiler to another depending upon
the degree of flexibility provided. Compilers that are generated in this way
tend to require more memory and compile programs more slowly than hand-
written rompilers. However, the object code generated by the compiler may
actually,r}‘be better when a compiler-compiler is used. Because of the automatic
construSttion of scanners and parsers, and the special tools provided for writ-
ing semantic routines, the compiler writer is freed from many of the mechani-
cal details of compiler construction. The writer can therefore focus more
attention on good code generation and optimization. r

A brief description of one compiler-compiler (YACC) is given in
Section 5.5.3. Further discussions and examples of compiler-writing tools can
be found in Fischer and LeBlanc (1988).

5.5 IMPLEMENTATION EXAMPLES

In this section we briefly discuss the design of several real compilers.
Section 5.5.1 describes the SunOS C compiler, which runs on a variety of hard-
ware platforms.

Section 5.5.2 discusses the Java programming language and run-time envi-
ronment recently developed by Sun Microsystems.

Section 5.5.3 presents a description of the YACC compiler-compiler, origi-
nally developed at Bell Laboratories for use with the UNIX operating system.
We also briefly describe LEX, a scanner generator that is commonly used with
YACC.

As in our previous discussions of real systems, we do not attempt to give a
complete description of any of these compilers. References are provided for
those readers who want more information.

Compilers

5.5.1 SunOS C Compiler

The SunOS C compiler runs on a variety of hardware platforms, including
SPARC, x86, and PowerPC. It conforms to the ANSI C standard, which is
described in Schildt (1990). It also supports traditional (pre-ANSI) C features,
as described in Kernighan and Ritchie (1978). The user of the compiler can
specify which sets of language features are to be accepted by the compiler and
which are to generate warning messages during compilation.

The translation process begins with the execution of the C preprocessor,
which performs such functions as file inclusion and macro processing. (See
Section 4.4.3 for a brief discussion of some of these features.) The output from
the preprocessor goes to the C compiler itself. Several different levels of code
optimization can be specified by the user. The compiler generates assembler
language, which is then translated by an assembler. The preprocessor and
compiler also accept source files that contain assembler language sub-
programs, and pass these on to the assembly phase.

The preprocessing phase consists of the following conceptual steps. The
logical ordering of these steps is specified by the ANSI standard to eliminate
possible ambiguities. The implementation of a particular preprocessor may in
fact combine several of these steps. However, the effect must be the same as if
they were executed separately in the sequence given.

1. Trigraph sequences are replaced by their single-character equiva-

:lents. The trigraph sequences are provided as a way to specify C lan-

guage characters that may not available on some terminals. For
example, the sequence ??< is replaced by {.

2. Any source line that ends with a backslash (\) and a newline is
spliced together with the following line by deleting the backslash
- “and newline.

3. The source file is partitioned into preprocessing tokens and sequences
of white-space characters. Each comment is, in effect, replaced by one
space. Preprocessing tokens include the regular tokens of the C

. language, plus tokens such as header file names and special numeric
forms that are used only in the preprocessing stage.

4. Preprocessing directives are executed, and macros are expanded.
Any source files that are included in response to an #include directive
are processed from step 1 through 4.

5. Escape sequences in character constants and string literals are con-
verted to their character equivalents. For example, \n is converted to
a newline, and \0 is converted to the character with ASCII code 0.

303

304

System Software

6. Adjacent string literals are concatenated. For example, “hello,”
“world” is converted to “hello, world”.

After preprocessing is complete, the actual process of program translation
begins. The lexical analysis of the program is performed during preprocessing
(step 3 above). Thus the compiler itself begins with syntactic analysis,
followed by semantic analysis and code generation.

Like most implementations of UNIX, the SunOS operating system itself is
largely written in C. Many compilers, editors, and other pieces of UNIX system
software are also written in C. Because of this, it is important that a C compiler
for such a system be able to generate efficient object code. It is also desirable that
the compiler include tools to assist programmers in analyzing the performance
of their programs. We will focus on these aspects of the SunOS C compiler.

Four different levels of code optimization can be specified by the user
when a program is compiled. These levels are designated by O1 through O4.
The O1 level does only a minimal amount of local (peephole) optimization.
This type of optimization is performed at the assembler-language level, after the
compilation itself is complete.

The O2 level provides basic local and global optimization. This includes
register allocation and merging of basic blocks (see Section 5.2.2) as well as
elimination of common subexpressions and removal of loop invariants (see
Section 5.3.2). It also includes a number of other optimizations such as alge-
braic simplification and tail recursion elimination. In general, the O2 level of
optimization results in the minimum object code size. This is the default that is
provided unless otherwise requested by the user.

The O3 and O4 levels include optimizations that can improve execution
speed, but usually produce a larger object program. For example, O3 opti-
mization performs loop unrolling, which partially converts loops into straight-
line code. The O4 level automatically converts calls to user-written functions
into in-line code. This eliminates the overhead of calling and returning from
the functions. Optimizations such as these can be guided by the user via
compile-time options. For example, the user can specify the names of functions
that should (or should not) be converted to in-line code.

When requested, the SunOS C compiler can insert special code into the
object program to gather information about its execution. For example, one
option accumulates a count of how many times each basic block is executed.
Another option invokes a run-time recording mechanism. The resulting data
can be analyzed by other SunOS software tools to produce profiles of program
execution. For example, one such profile shows the percentage of execution
time spent in different parts of the program.

Other program analysis tools provide support for reordering object code at
the function level. To use these tools, the user instructs the C compiler to place

Compilers

each function in a separate section. After the execution profile is analyzed, the
object program is relinked to rearrange the functions. This can produce an exe-
cutable program with improved locality of reference that runs more efficiently
under a virtual memory management system. (Issues of virtual memory and
locality of reference are discussed in Section 6.2.5.)

Like many other compilers, SunOS C can also generate information that
supports the operation of debugging tools. For example, one option requests
the compiler to include source code information in the object program. Using
this information, the symbolic debugger can allow the user to examine variable
values, control execution, browse the source file, and so on.

Further information about the SunOS C compiler can be found in Sun
Microsystems (1994c).

5.5.2 Java Compiler and Environment

Java is a new programming language and operating environment developed
by Sun Microsystems. It was designed to support applications in a diverse
environment such as the Internet. Using Java, programmers can create high-
performance applications that are portable without modification to multiple
operating systems and hardware platforms. Java also provides features that
are intended to make distributed applications more reliable and more secure.

The Java language itself is derived from C and C++. However, many of the
features found in these languages have been removed tc make Java program-
ming as simple and error-free as possible. For example, Java has no “go to”
statement and no pointers. Memory management is handled automatically,
thus freeing the programmer from a complex and error-prone task. Data con-
versions that might cause loss of precision must be done explicitly by using
built-in language features. This makes it possible for the compiler to perform
strong type-checking, which leads to early detection of many programming
errors.

- Java is an object-oriented language. (If you are unfamiliar with the princi-
ples of object-oriented programming, you may want to review the discussion in
Section 8.4.1.) The object-orientation in Java is stronger than in many other lan-
guages, such as C++. Except for a few primitive data types, everything in Java
is an object. Arrays and strings are treated as objects. Even the primitive data
types can be encapsulated inside objects if necessary. There are no procedures
or functions in Java; classes and methods are used instead. Thus programmers
are constrained to use a “pure” object-oriented style, rather than mixing the
procedural and object-oriented approaches.

Java provides built-in support for multiple threads of execution. This fea-
ture allows different parts of an application’s code to be executed concurrently.

305

306

System Software

For example, an interactive application might use one thread to run an anima-
tion, another to control sound effects, and a third to scroll a window. In Java,
threads are implemented as objects. The Java library provides methods that
can be invoked to start or stop a thread, check on the status of a thread, and
synchronize the operation of multiple threads.

The Java compiler follows the P-code approach we discussed in
Section 5.4.3. It does not generate machine code or assembly language for a
particular target machine. Instead, the compiler generates bytecodes—a high-
level, machine-independent code for a hypothetical machine (the Java Virtual
Machine). This hypothetical machine is implemented on each target computer
by an interpreter and run-time system. Thus a Java application can be run,
without modification and without recompiling, on any computer for which a
Java interpreter exists. The Java compiler itself is written in Java. Therefore the
compiler can also run on any machine with a Java interpreter.

The bytecode approach also allows easy integration of Java applications into
the World Wide Web. A segment of Java bytecode (often called an applet) can be
included in an HTML page, in much the same way an image can be included.
When a Java-compatible Web browser is used to view the page, the code for the
applet is downloaded and executed by the browser. The applet can then per-
form animation, play sound, and generally interact with the user in real time.

The Java Virtual Machine supports a standard set of primitive data types:
1-, 2-, 4-, and 8-byte integers, single- and double-precision floating-point num-
bers, and 16-bit character codes. These data representations are independent of
the architecture of the target machine. The interpreter is responsible for emu-
lating these data types using the underlying hardware. Thus, for example, the
floating-point formats and the big- or little-endian storage of mtegers on the
target machine have no effect on an application program.

A bytecode instruction on the Java Virtual Machine consists of 4 1-byte
opcode followed by zero or more operands. Many opcodes require no explicit
operands in the instruction; instead, they take their operand values' from a
stack. A stack organization was chosen so that it would be easy to emulate the
machine on a computer with few general-purpose registers (such as the x86
architecture).

For example, the “iadd” instruction adds two integers together. It expects
that the integers to be added are the top two words on the operand stack,
pushed there by previous instructions. Both integers are popped from the
stack, and their sum is pushed back onto the stack. Each primitive data type has
specialized instructions that must be used to operate on items of that type.

There are also single bytecode instructions that perform higher-level oper-
ations. For example, one instruction allocates a new array of a particular type.
Other instructions can be used to transfer elements of an array to or ftom the
operand stack. .

Compilers

Similarly, the bytecode instructions provide direct support for the object-
oriented nature of Java. One instruction creates a new ‘object of a specified
type. Another instruction tests whether an object is an instance of a particular
class. There are four instructions that can be used (depending upon the situa-
tion) to invoke a method on an object. Another group of instructions is used to
manipulate fields within an object.

Performance is always a consideration, especially with interpreted execu-
tion. The Java interpreter is designed to run as fast as possible, without needing
to check the run-time environment. The automatic garbage collection system used
to manage memory runs as a low-priority background thread. Experiments con-
ducted on modern (1995) systems such as workstations and high-end personal
computers show generally good response running interactive graphical applica-
tions. For example, creating a new object typically requires about 8 msec and
invoking a method on an object requires about 2 msec.

However, there are times when higher performance may be needed. In such
cases, the Java bytecodes can be translated at execution time into machine code
for the computer on which the application is running. Measurements on execu-
tion of bytecodes converted to machine code show performance roughly the
same as the equivalent application coded directly in C or C++.

A description of the Java language can be found in Arnold and Gosling
(1996). Further information about the implementation of Java can be found in
Lindholm and Yellin (1996) and Sun Microsystems (1995b).

5.5.3 The YACC Compiler-Compiler*

YACC (Yet Another Compiler-Compiler) is a parser generator that is available
on UNIX systems. YACC has been used in the production of compilers for
Pascal, RATFOR, APL, C, and many other programming languages. It has also
been used for several less conventional applications, including a typesetting
language and a document retrieval system. In this section we give brief descrip-
tions of YACC and LEX, the scanner generator that is related to YACC. Further
information about these software tools can be found in Levine et al. (1992).

A lexical scanner must be supplied for use with YACC. This scanner is called
by the parser whenever a new input token is needed. It returns an integer that
identifies the type of token found, as described in Section 5.1. The scanner may
also make entries in a symbol table for the identifiers that are processed.

LEX is a scanner generator that can be used to create scanners of the type
required by YACC. A portion of an input specification for LEX is shown in

*Adapted from “Language Development Tools on the Unix System” by S.C. Johnson, from the
IEEE publication Computer, Vol. 13, No. 8, pp. 16-21, August 1980. © 1980 IEEE.

307

308

System Software

Fig. 5.31(a). Each entry in the left-hand column is a pattern to be matched
against the input stream. When a pattern is matched, the corresponding action
routine in the right-hand column is invoked. These action routines are written
in the programming language C. The routines usually return an indication of
the token that was recognized. They may also make entries in tables and per-
form other similar tasks.

In the example shown in Fig. 5.31(a), the first pattern has no associated
action; the effect of this is to delete blanks as the input is scanned. The
actions for the next three patterns simply return a token type: the token LET
for the keyword let, MUL for the operator *, and ASSIGN for the operator =.
As discussed above, the internal representations of LET, MUL, and the other
tokens are integers. The fifth pattern specifies the form of identifiers to be
recognized. The first character must be in the range a-z or A-Z. This may be
followed by any number of characters in the ranges a-z, A-Z, or 0-9. The * in
this pattern indicates that an arbitrary number of repetitions of the preceding

o ; /* ignore blanks */

let) return (LET) ;

ok return (MUL) ;

= return (ASSIGN) ;

[a-zA-Z] [a-zA-Z0-9]1* {make entries in tables; return(ID)};

(a)

$token ASSIGN ID LET MUL ...

statement : LET ID ASSIGN expr

{ ...}
expr : expr MUL expr

{ $$ = build(MUL, $1,$3);}
expr : D

{ ...}

(b)
Figure 5.31 Example of input specifications for LEX and YACC.

Compilers

item are allowed. The action routine for this pattern makes entries in the
appropriate tables to describe the identifier found and then returns the token
type ID.

According to the specifications given in Fig. 5.31(a), the input

let x =y * z
would be scanned as the sequence of tokens
LET ID ASSIGN ID MUL ID

Note that the first pattern that matches the input stream is selected, so the key-
word let is recognized as the token LET, not as ID.

LEX can be used to produce quite complicated scanners. Some languages,
such as FORTRAN, however, have lexical analyzers that must still be gener-
ated or modified by hand.

The YACC parser generator accepts as input a grammar for the language
being compiled and a set of actions corresponding to rules of the grammar. A
portion of such an input specification appears in Fig. 5.31(b). The first line
shown is a declaration of the token types used. The other entries are rules of
the grammar. The YACC parser calls the semantic routine associated with each
rule as the corresponding language construct is recognized. Each routine may -
return a value by assigning it to the variable $$. Values returned by previous
routines, or by the scanner, may be referred to as $1, $2, etc. These variables
designate the values returned for the components on the right-hand side of the
corresponding rule, reading from left to right.

An example of the use of such values is shown in Fig. 5.31(b). The semantic
routine associated with the rule

expr : expr MUL expr

constructs a portion of the parse tree for the statement, using a tree-building
function build. This subtree is returned from the semantic routine by assigning
the subtree to $$. The arguments passed to the build function are the operator
MUL and the values (i.e., the subtrees) returned when the operands were rec-
ognized, These values are denoted by $1 and $3.

It is sometimes useful to perform semantic processing as each part of a rule
is recognized. YACC permits this by allowing semantic routines to be written
in the middle of a rule as well as at the end. The value returned by such a rou-
tine is available to any of the routines that appear later in the rule. It is also
possible for the user to define global variables that can be used by all of the
semantic routines and by the lexical scanner.

310

System Software

The parsers generated by YACC use a bottom-up parsing method called
LALR(1), which is a slightly restricted form of shift-reduce parsing. The
parsers produced by YACC have very good error detection properties. Error
handling permits the reentry of the items in error or a continuation of the
input process after the erroneous entries are skipped.

EXERCISES
Section 5.1

1. Draw parse trees, according to the grammar in Fig. 5.2, for the fol-
lowing <id-list>s:
a. ALPHA
b. ALPHA, BETA, GAMMA

2. Draw parse trees, according to the grammar in Fig. 5.2, for the fol-
lowing <exp>s:
a. ALPHA + BETA
b. ALPHA - BETA * GAMMA
¢. ALPHA DIV (BETA + GAMMA) - DELTA

3. Modify the grammar in Fig. 5.2 to include statements of the form
IF condition THEN statement-1 ELSE statement-2

where the ELSE clause may be omitted. Assume that the condition
must be of the form a < b, a = b, or a > b, where a and b are single
identifiers or integers. You do not need to allow for nested [Fs—that
is, statement-1 and statemment-2 may not be IF statements.

4. Write BNF grammar for JAVA.

5. Modify the grammar in Fig. 5.2 so that the 1/0 list for a WRITE state-
ment may include character strings enclosed in quotation marks, as
well as identifiers.

6. Write an algorithm that scans an input stream, recognizing operators
and identifiers. An identifier may be up to 10 characters long. It
must start with a letter, and the remaining characters, if any, must
be letters and digits. The operators to be recognized are +, -, *, DIV,

10.

11.

12.

Compilers

and :=. Your algorithm should return an integer that represents the
type of token found, using the coding scheme of Fig. 5.5. If an illegal
combination of characters is found, the algorithm should return the
value -1.

Modify the scanner you wrote in Exercise 8 so that it recognizes inte-
gers as well as identifiers. Integers may begin with a sign (+ or -);
however, they may not begin with the digit O (except for the integer
that consists of a single 0).

Draw a state diagram for a finite automaton to recognize a token
type named “real constant.” This token consists of a string of digits
that contains a decimal point. There must be at least one digit before
the decimal point.

Modify your answer to Exercise 10 so that a real constant may also
contain a scale factor. The scale factor, which follows the string of
digits, consists of the letter E followed by. a positive or negative inte-
ger. A real constant must contain either a decimal point or a scale fac-
tor (or both). There must be at least one digit before the decimal
point (if any).

Draw a state diagram for a finite automaton to recognize a token

type named “write-element.” Each such token must have one of the -

following forms:

name
name:n
name:n:m
‘string’
‘string’:n

where

nanie must start with a letter (a-z); all characters after the first let-
ter must be either letters (a-z) or digits (0-9).

string may contain any characters other than quote (*).

n,m must be positive integers containing only digits (0-9), with no
leading zeros allowed.

Write a program that simulates the operation of a finite automaton,
using a tabular representation like the one illustrated in Fig. 5.10(b).

Select a high-level programming language with which you are
familiar and write a lexical scanner for it.

311

312

System Software

13.

14.

15.

16.

17.

18.

19.

20.

21.

Parse the assignment statement on line 11 of Fig. 5.1, using the
method of recursive descent and the procedures given in Fig. 5.13.

Write recursive-descent parsing procedures that correspond to the
rules for <dec-list>, <dec>, and <type> in Fig. 5.11. Use these proce-
dures to parse the declaration on line 3 of Fig. 5.1.

Write recursive-descent parsing procedures for the remaining non-
terminals in the grammar of Fig. 5.11. Parse the entire program in
Fig. 5.1, using the method of recursive descent.

Use the routines in Figs. 5.14-5.16 to generate code for the following
statements from the example program in Fig. 5.1:

a. the assignment statement on line 11
b. the WRITE statement on line 15
c. the FOR statement beginning on line 7

* Refer to the parse tree in Fig. 5.4 to see the order in which the parser

recognizes the various constructs involved in these statements.

Use the routines in Figs. 5.14-5.16 to generate code for the entire
program in Fig. 5.1.

Write code-generétion routines for the new rules that you added to
the grammar in Exercise 6 to define the IF statement.

Suppose that the grammar in Fig. 5.2 is modified to allow floating-
point variables (i.e., the <type> REAL) as well as integers. How
would the code-generation routines given in the text need to be
changed? Assume that mixed-mode arithmetic expressions are
allowed according to the usual rules of Pascal.

The code-generation routines in the text use immediate addressing
for integers written by the programmer in arithmetic expressions (for
example, the 100 in the expression SUM DIV 100). How could such
constants be handled by a compiler for a machine that does not have
immediate addressing?

What kinds of source program errors would be detected during lexi-
cal analysis?

What kinds of source program errors would be detected during
syntactic analysis?

23.

24.

25.

Compilers

What kinds of source program errors would be detected during code
generation?

In what ways might the symbol table used by a compiler be different
from the symbol table used by an assembler?

Suppose you have a one-pass Pascal compiler similar to the one
described in Section 5.1. Now you want to add a simple macro capa-
bility to this compiler. The macro processing should be integrated into
the rest of the compiler, not implemented as a preprocessor. Describe
how the macro processing routines would interact with the rest of the
compiler. For example, would the routine that processes macro defini-
tions be called by the scanner, the parser, or the code generator?
Which of these phases of the compiler would interact with the
routines that recognize and expand macro invocation statements?

Section 5.2

1.

Rewrite the code-generation routines given in Figs. 5.14 and 5.15 to
produce quadruples instead of object code.

Write a set of routines to generate object code from the quadruples
produced by your routines in Exercise 1. (Hint: You will need a rou-
tine that is similar in function to the GETA procedure in Fig. 5.15.)

Use the routines you wrote in Exercise 1 to produce quadruples for
the following program fragment:

READ (X, Y) ;

Z:=3*X-5*Y+X*Y;

Use the routines you wrote in Exercise 2 to produce object code from
the quadruples generated in Exercise 3.

Rewrite the code-generation routines given in Fig. 5.16 to produce
quadruples instead of object code.

Use the routines you wrote in Exercises 1 and 5 to produce quadru-
ples for the program in Fig. 5.1.

Divide the quadruples you produced in Exercise 6 into basic blocks
and draw a flow graph for the program.

Assume that you are generating SIC/XE object code from the
quadruples produced in Exercise 6. Show one way of performing

313

314 System Software

register assignments to optimize the object code, using registers S
and T to hold variable values and intermediate results.

Section 5.3

1. Write an algorithm for the prologue of a procedure, assuming the
activation record format shown in Fig. 5.26.

2. Write an algorithm for the epilogue of a procedure, assuming the
activation record format shown in Fig. 5.26.

3. Suggest a way of using the activation record stack to perform
dynamic storage allocation for controlled variables. What would be
the advantages and disadvantages of such a technique as compared
to using a separate area of free storage to perform these allocations?

4. Write algorithm for scanner, parser and code generator for
input/output, definitions, control statements of C language.

5. Assume the array C is declared as
C: ARRAY[5..20] OF INTEGER
Generate quadruples for the statement

C[I] =0

6. Assume the array D is declared as

D: ARRAY [-10..10,2..12] OF INTEGER

and is stored in row-major order. Generate quadruples for the state-
ment

D[I,J] := 0

7. Assume the array D declared in Exercise 5 is stored in column-major
order. Generate quadruples for the statement
D[(I,J] =0

8. Generalize the methods given in Section 5.3.1 to the storage of three-
dimensional arrays in row-major order. Assuming the array declaration
E : ARRAY([1..5, 1..10, 0..8] OF INTEGER
generate quadruples for the statement

E[I,J,K] = 0

9.

10.

11.

12.

13.

Compilers

How could the base address for the array A defined in Fig. 5.22(a) be
modified to avoid the need for subtracting 1 from the subscript value
(quadruple 1)?

How could the technique derived in Exercise 8 be extended to two-
dimensional arrays?

Assume the array declaration

T : ARRAY[1..5, 1..100] of INTEGER

Translate the following statements into quadruples and perform
elimination of common subexpressions on the result.

K := J-1;
FOR I :=1 TO 5 DO
BEGIN
T[I,J] := K * K;
J :=J + K;
T [I,J] :=K*K-1;
END

Modify the quadruples produced in Exercise 10 to remove loop
invariants.

Write an algorithm to construct the proper display wheri a procedure
is invoked. Your algorithm may use the old display (i.e., the current
display before the call), the address of the activation record created
for the procedure being called, and the block-nesting level of the
procedure being called.

315

Chapter 6

Operating Systems

In this chapter we discuss the functions and design of operating systems. We
discuss the most important concepts and issues related to operating systems,
giving examples and providing references for further reading.

Operating systems vary widely in purpose and design. Some are relatively
simple systems designed to support a single user on a personal computer.
Others are extremely complex systems that support many concurrent users
and manage highly sophisticated hardware and software resources. Section 6.1
discusses the basic features of an operating system that should be found in
almost any such piece of software. Because of the large variety of operating
systems, this list of basic features is surprisingly brief. It consists of only a
few generic functions that could almost be taken as a definition of the term
operating system.

Section 6.2 describes some important machine-dependent operating sys-
tem features. Section 6.3 describes a number of machine-independent features.
Many of the functions discussed in these two sections are actually required in
operating systems that support more than one user at a time. Such functions
include, for example, the allocation of system resources and the management
of communication among different users.

Section 6.4 briefly presents some design alternatives for operating systems.
Section 6.5 describes a number of actual operating systems, illustrating some
of the variety of form and function in such software.

6.1 BASIC OPERATING SYSTEM FUNCTIONS

In this section we discuss the fundamental functions common to all operating
systems. The main purpose of an operating system is to make the computer eas-
ier to use. That is, the software provides an interface that is more user-friendly
than the underlying hardware. As a part of this process, the operating system
manages the resources of the computer in an attempt to meet overall system
goals such as efficiency. The details of this resource management can be quite
complicated; however, the operating system usually hides such complexities
from the user.

317

318

System Software

The basic functions of an operating system is shown in Fig. 6.1. The operating
system provides programs with a set of services that can aid in the performance
of many common tasks. For example, suppose program P wants to read data
sequentially from a file. An operating system might provide a service routine that
could be invoked with a command such as read(f). With such a command, the
program would specify a file name; the operating system would take care of the
details of performing the actual machine-level I/0.

The most common ways of classifying operating systems are based on the
kind of user interface provided. Much operating system terminology arises
from the way the system appears to a user. In this section we introduce terms
commonly used to describe operating systems. The types of systems men-
tioned are not always distinct. Some of the classifications overlap and 'many
real operating systems fall into more than one category.

One way of classifying operating systems is concerned with the number of
users the system can support at one time. A single-job system is one that runs
one user job at a time. Single-job systems, which are commonly found today
on microcomputers and personal computers, were the earliest type of operat-
ing system. A single-job operating system would probably be used on a stan-
dard SIC computer. Because of the limited memory size and lack of data
channels and other resources, it would be difficult to support more than one
user on such a machine.

Real
machine

Extended machine
(run-time environment)

User interface

Figure 6.1 Basic concept of an operating system.

Operating Systems

A multiprogramming system permits several user jobs to be executed
concurrently. The operating system takes care of switching the CPU among the
various user jobs. It also provides a suitable run-time environment and other
support functions so the jobs do not interfere with each other. A multiprocessor
system is similar to a multiprogramming system, except that there is more
than one CPU available. In most multiprocessor systems, the processors share
a common memory. Thus the user can view the system as if it were a powerful
single processor.

A network of computers may be organized in a number of different ways.
Each computer may have its own independent operating system, which pro-
vides an interface to allow communication via the network. A user of such a
system is aware of the existence of the network. He or she may login to remote
machines, copy files from one machine to another, etc. This kind of system is
often called a network operating system. Except for the network interface, such an
operating system is quite similar to those found on a single-computer system.

A distributed operating system allows a more complex type of network orga-
nization. This kind of operating system manages hardware and software
resources so that a user views the entire network as a single system. The user
is unaware of which machine on the network is actually running a program or
storing data. (In fact, many such systems allow programs to run on several
processors at the same time.)

Historically, operating systems have also been classified by the type of
access provided to a user. In a batch processing system, a job is described by a
sequence of control statements stored in a machine-readable form. The operat-
ing system can read and execute a series of such jobs without human interven-
tion except for such functions as tape and disk mounting. The order in which
the jobs are executed can be selected in several different ways. This job sched-
uling problem is discussed in Section 6.3.2. A time-sharing system provides
interactive, or conversational, access to a number of users. The operating sys-
tem executes commands as they are entered, attempting to provide each user
with a reasonably short response time to each command. A real-time system is
designed to respond quickly to external signals such as those generated by
data sensors. Real-time systems are used, for example, on computers that
monitor and control time-critical processes such as nuclear reactor operation
or spacecraft flight.

In general, the goal of a multiprogramming batch processing system is to
make the most efficient use of the computer. On the other hand, the goal of a
time-sharing system is to provide good response time to the interactive users.
To provide good response time, it may be necessary to accept less efficient
machine utilization. The goal of a real-time system is to provide a guaranteed
response time to time-critical external events. It is quite common for these
goals to be mixed in a single operating system. For example, many batch

319

320

System Software

processing systems also support time-sharing users, and some may also
provide support for real-time applications.

Further discussions concerning these types of operating systems and
descriptions of their historical background can be found in Tanenbaum (1992)
and Singhal and Shivaratri (1994).

6.2 MACHINE-DEPENDENT OPERATING
SYSTEM FEATURES

One of the most important functions of an operating system is managing the
resources of the computer on which it runs. Many of these resources are
directly related to hardware units such as central memory, I/O channels, and
the CPU. Thus many operating system functions are closely related to the
machine architecture.

Consider, for example, a standard SIC computer. This machine has a small
central memory, no I/O channels, no supervisor-call instruction, and no inter-
rupts. Such a machine might be suitable as a personal computer for a single
user; however, it could not reasonably be shared among several congurrent
users. Thus an operating system for a standard SIC machine would probably
be a single-job system, providing a simple user interface and a minimal set of
functions in the run-time environment. It would probably provide few, if any,
capabilities beyond the simple ones discussed in Section 6.1.

On the other hand, a SIC/XE computer has a larger central memory, I/0O
channels, and many other hardware features not present on the standard SIC
machine. A computer with these characteristics might well have a multipro-
gramming operating system. Such a system would allow several concurrent
users to share the expanded machine resources that are available, and would
take better advantage of the more advanced hardware. Of course, the sharing
of a computing system between several users creates many problems, such as
resource allocation, that must be solved by the operating system. In addition,
the operating system must provide support for the more advanced hardware
features such as I/O channels and interrupts.

In this section we discuss some important machine-dependent operating
system functions. This discussion is presented in terms of a SIC/XE computer;
however, the same principles can easily be applied to other machines that
have architectural features similar to those of SIC/XE. We describe a number
of significant SIC /XE hardware features as a part of our discussion. For ease of
reference, these features are also summarized in Appendix C.

Section 6.2.1 introduces fundamental concepts of interrupts and interrupt
processing that are used throughout the remainder of this chapter. Section 6.2.2
discusses the problem of switching the CPU among the several user jobs

Operating Systems

being multiprogrammed. Section 6.2.3 describes a method for managing input
and output using 1/O channels in a multiprogramming operating system.
Sections 6.2.4 and 6.2.5 discuss the problem of dividing the central memory
between user jobs. Section 6.2.4 presents techniques for managing real memory,
and Section 6.2.5 introduces the important topic of virtual memory.

6.2.1 Interrupt Processing

An interrupt is a signal that causes a computer to alter its normal flow of
instruction execution. Such signals can be generated by many different condi-
tions, such as the completion of an 1/0 operation, the expiration of a preset
time interval, or an attempt to divide by zero.

The sequence of events that occurs in response to an interrupt is illustrated
in Fig. 6.2. Suppose program A is being executed when an interrupt signal is
generated by some source. The interrupt automatically transfers control to an
interrupt-processing routine (also called an interrupt handler) that is usually a
part of the operating system. This interrupt-processing routine is designed to
take some action in response to the condition that caused the interrupt. After
completion of the interrupt processing, control can be returned to program A
at the point at which its execution was interrupted.

In the sequence of events just described, the generation and processing of
the interrupt may be completely unrelated to program A. For example, the inter-
rupt might be generated by the completion of an I/O operation requested by

Program A
Interrupt-processing
routine
Interrupt
Restore
status

Figure 6.2 Basic concept of interrupt processing.

321

322

System Software

another program. In general, it is impossible to predict when, and for what rea-
son, program A will be interrupted in this way. Another way of expressing this
is to say that the interrupts may be asynchronous with respect to program A. The
hardware and software take care of saving the status of the computer when A is
interrupted, and restoring it when A is resumed. Because of this, the execution
of A is unaffected, except for timing, by the occurrence of the interrupt. Indeed,
there may be no direct way for A even to detect that an interrupt has occurred.

Figure 6.3 describes the four classes of interrupts on a SIC/XE computer.
An SVC interrupt (Class I) is generated when a supervisor call instruction is
executed by the CPU. This instruction is used by programs to request operat-
ing system functions. A program interrupt (Class II) is generated by some condi-
tion that occurs during program execution, such as an attempt to divide by
zero or an attempt to execute an illegal machine instruction. Appendix C
contains a complete list of the conditions that can cause a program interrupt.

A timer interrupt (Class III) is generated by an interval timer within the
CPU. This timer contains a register that can be set to an initial positive value
by the privileged instruction STL. The value in this register is automatically
decremented by 1 for each millisecond of CPU time that is used. When the
value reaches zero, a timer interrupt occurs. The interval timer is used by the
operating system to govern how long a user program can remain in control of
the machine.

An I/O interrupt (Class IV) is generated by an I/O channel or device. Most
such interrupts are caused by the normal completion of some 1/O operation;
however, an I/O interrupt may also signal a variety of error conditions.

When an interrupt occurs, the status of the CPU is saved, and control is
transferred to an interrupt-processing routine. We describe the method used
by SIC/XE to accomplish this. The mechanism described is typical of the ones
used on many real computers.

On a SIC/XE machine, there is a fixed interrupt work area corresponding to
each class of interrupt, as illustrated in Fig. 6.4. For example, the area assigned

Interrupt
Class type
I SvC
I Program
I Timer
v I/0

Figure 6.3 SIC/XE interrupt types.

Operating Systems

to the timer interrupt begins at memory address 160. When a timer interrupt
occurs, the contents of all registers are stored in this work area, as shown in
Fig. 6.4(a). Then the status word SW and the program counter PC are loaded
with values that are prestored in the first two words of the area. This storing
and loading of registers is done automatically by the hardware of the machine.

The loading of the program counter PC with a new value automatically
causes a transfer of control. The next instruction to be executed is taken from
the address given by the new value of PC. This address, which is prestored in
the interrupt work area, is the starting address of the interrupt-handling routine
for a timer interrupt. The loading of the status word SW also causes certain
changes, described later in this section, in the state of the CPU.

After taking whatever action is required in response to the interrupt, the
interrupt-handling routine returns control to the interrupted program by exe-
cuting a Load Processor Status (LPS) instruction. This action is illustrated in
Fig. 6.4(b). LPS causes the stored contents of SW, PC, and the other registers to
be loaded from consecutive words beginning at the address specified in the
instruction. This restores the CPU status and register contents that existed at
the time of the interrupt, and transfers control to the instruction following the
one that was being executed when the interrupt occurred. The saving and
restoring of the CPU status and register contents are often called context
switching operations. -

The status word SW contains several pieces of information that are impor-
tant in the handling of interrupts. We discuss the contents of SW for a SIC/XE
machine. Most computers have a similar register, which is often called a program
status word or a processor status word.

Figure 6.5 shows the contents of the status word SW. The first bit, MODE,
specifies whether the CPU is in user mode or supervisor mode. Ordinary pro-
grams are executed in user mode (MODE = 0). When an interrupt occurs, the
new SW contents that are loaded have MODE = 1, which automatically
switches the CPU to supervisor mode so that privileged instructions may be
used. Before the old value of SW is saved, the ICODE field is automatically set
to a value that indicates the cause of the interrupt. For an SVC interrupt,
ICODE is set to the value supplied by the user in the SVC instruction. This
value specifies the type of service request being made. For a program inter-
rupt, ICODE indicates the type of condition, such as division by zero, that
caused the interrupt. For an I/0 interrupt, ICODE gives the number of the
I/0 channel that generated the interrupt. Further information about the possi-
ble values of ICODE can be found in Appendix C. '

The status word also contains the condition code CC. Saving SW automati-
cally preserves the condition code value that was being used by the inter-
rupted process. The use of the fields IDLE and ID will be described later in
this chapter. IDLE specifies whether the CPU is executing instructions or

323

324 System Software

Central memory

[100] New SW
103} New PC
106| Old SW
109| Oid PC
10C

svC
interrupt T
work area

Register
save
area

Registers

130| New SW

133| New PC

b 136} Oid SW
rogram

interrupt { 139| Oid PC

work area | 13C

Register
save
area

iEELE

[(160| New SW
163| New PC
166 Old SW
Timer | 469/ Old PC

interrupt ¢
work area | 16C

THs
iEEE

Register
save
area

4

190| New SW
193| New PC
196 Oid SW

' 110 4199 Oid PC
interrupt ——_—

work area | 19C

Register
save
area

(a)

Figure 6.4 Context switching operations caused by (a) timer interrupt
and (b) LPS 166.

Central memory

100| New SW
103| New PC
sve 106| Old SW
interruptﬁ 109(Old PC
work area | 10C
Register
save
area
Registers
L [Csw_Je
(130| New SW
133| New PC
136 Old SW _
interrupt 139 OId PC
work area} 13C R
egister
area
!
160 New SW >
163| New PC
oo 01y 5w 5]
Timer
interrupt ¢ 169] Oid PC
work area | 16C
Register
save
L area I F l
[190] New SW
193| New PC
196| OIld SW
Vo 199| OId PC
interrupt
work area | 19C
Register
save
area
{b)

Figure 6.4 (contd)

Operating Systems

325

326

System Software
Bit Field
position name Use
0 MODE 0 = user mode, 1 = supervisor mode
1 IDLE 0 = running, 1 = idle
2-5 ID Process identifier
6-7 CC Condition code
8-11 MASK Interrupt mask
12-15 Unused

16-23 ICODE Interruption code

Figure 6.5 SIC/XE status word contents.

is idle. ID contains a 4-bit value that identifies the user program currently
being executed.

The remaining status word field, MASK, is used to control whether inter-
rupts are allowed. This control is necessary to prevent loss of the stored
processor status information. Suppose, for example, that an I/O interrupt
occurs. The values of SW, PC, and the other registers would be stored in the
I/O-interrupt work area as just described, and the CPU would begin to exe-
cute the 1/O-interrupt handler. If another I/0O interrupt occurred before the
processing of the first had been completed, another context switch would take
place. This time, however, the register contents stored in the interrupt work
area would be the values currently being used by the interrupt handler. The
values that were saved by the original interrupt would be destroyed, so it
would be impossible to return control to the user program that was executing
at the time of the first interrupt.

To avoid such a problem, it is necessary to prevent certain interrupts from
occurring while the first one is being processed. This is accomplished by using
the MASK field in the status word. MASK contains one bit that corresponds to
each class of interrupt. If a bit in MASK is set to 1, interrupts of the correspon-
ding class are allowed to occur. If the bit is set to 0, interrupts of the corre-
sponding class are not allowed. When interrupts are prohibited, they are said
to be masked (also often called inhibited or disabled). Interrupts that are masked
are not lost, however, because the hardware saves the signal that would have
caused the interrupt. An interrupt that is being temporarily delayed in this
way is said to be pending. When interrupts of the appropriate class are again
permitted, because MASK has been reset, the signal is recognized and an
interrupt occurs.

Operating Systems

The masking of interrupts on a SIC/XE machine is under the control of the
operating system. It depends upon the value of MASK in the SW that is pre-
stored in each interrupt work area. One approach is to set all the bits in MASK
to 0, which prevents the occurrence of any other interrupt. However, it is not
really necessary to inhibit all interrupts in this way.

Each class of interrupt on a SIC/XE machine is assigned an interrupt prior-
ity. SVC interrupts (Class I) have the highest priority, program interrupts
(Class II) have the next highest priority, and so on. The MASK field in the sta-
tus word corresponding to each interrupt class is set so that all interrupts of
equal or lower priority are inhibited; however, interrupts of higher priority are
allowed to occur. For example, the status word that is loaded in response to a
program interrupt would have the MASK bits for program, timer, and 1/ o
interrupts set to 0; these classes of interrupt would be inhibited. The MASK bit
for SVC interrupts would be set to 1, so these interrupts would be allowed.
When interrupts are enabled at the end of an interrupt-handling routine, there
may be more than one type of interrupt pending (for example, one timer inter-
rupt and one I/O interrupt). In such a case, the pending interrupt with the
highest priority is recognized first.

With this type of priority scheme, it is possible for an interrupt-processing
routine itself to be interrupted. Such a nested interrupt situation is illustrated in
Fig. 6.6, which shows program A in control of the CPU when an I/O interrupt
occurs. The status of A is then saved, and control passes to the I/O-interrupt
handler. During the execution of this routine, a timer interrupt occurs, and

Program A

1/0 interrupt Timer interrupt
110 handler Timer handier
interrupt interrupt

< K

LPS 196 LPS 166

Figure 6.6 Example of nested interrupt processing.

327

328

System Software

control is transferred to the timer-interrupt handler. After the processing of the
timer interrupt is completed, an LPS instruction is used to reload the processor
status from the timer-interrupt work area. This returns control to the 1/0-
interrupt handler. Because the previous value of MASK is reloaded, timer
interrupts, which had been inhibited, are once again allowed. I/O interrupts,
however, are still inhibited. After the 1/O-interrupt processing is completed,
another LPS returns control to program A, restoring the CPU status as it was
at the time of the original interrupt. At this time, all interrupts are allowed
because the status word being used by program A has all MASK bits set to 1.

In later sections of this chapter, we see how interrupts can be used in such
operating system functions as process scheduling, I/O management, and
memory allocation.

6.2.2 Process Scheduling

A process, sometimes called a task, is most often defined as a program in execu-
tion. The CPU is assigned to processes by the operating svstem in order to
perform computing work. In a single-job operating svstem, there is only one
user process at a time. In a multiprogramming svstem, however, there may be
many independent processes competing for control of the CPU. Process sched-
uling is the management of the CPU by switching control among the various
competing processes according to some scheduling policy. The same tech-
niques can also be applied to scheduling each individual CPU in a multi-
processor system.

In most cases, a process corresponds to a user job. However, some operat-
ing systems allow one user job to create several different processes that are
executed concurrently. In addition, some systems allow one program to be
executed by several indepcindent processes. Further information about such
topics can be found in Tanenbaum (1992). In our discussions we assume that
each process corresponds to exactly one program and one user jol-.

A process is created when a user job begins execution, and this process is
destroyed when the job terminates. During the period of its existence, the
process can be considered to be in one of three states. A process is running
when it is actually executing instructions using the CPU. A process is blocked if
it must wait for some event to occur before it can continue execution. For
example, a process might be blocked because it must wait for the completion
of an [/O operation before proceeding. Processes that arc neither blocked nor
running are said to be ready. These processes are candidates to be assigned the
{_PU when the currently running process gives up control.

tigure 6.7 shows the possible transitions between these three process

i=:es. At any particular time, there can be no more than one process in the

Operating Systems

Wait for
some event ()
Blocked
Time-slice
expired i
ning \ P Awaited event

has occurred

Run

- Ready
Dispatch

Figure 6.7 Process state transitions.

running state (i.e., in control of the CPU). When the operating system transfers
control to a user process, it sets the interval timer to specify a time-slice, which
is a maximum amount of CPU time the process is allowed to use before giving
up control. If this time expires, the process is removed from the running state
and placed in the ready state. The operating system then selects some process
from the ready state, according to its scheduling policy. This process is placed
in the running state and given control of the CPU. The selection of a process,
and the transfer of control to it, is usually called dispatching. The part of the
operating system that performs this tunction is known as the dispatcher.

Before it has used all its assigned time-slice, a running process may find
that it must wait for the occurrence of some event such as the completion of an
I/0 operation. In such a case, the running process enters the blocked state,
and a new process is dispatched. When an awaited event occurs, the blocked
process associated with that event is moved to the ready state, where it is
again a candidate for dispatching. The operations of waiting for an event, and
of signaling that an event has occurred, are implemented as operating system
service requests (using SVC). A mechanism often used to associaw processes
with awaited events is described later in this section.

A process is usually switched between the running, ready, and blocked
states many times before completing its execution. Each time a process leaves
the running state, its current status must be saved. This status must be restored
the next time the process is dispatched so that the switching will have no effect
on the results of the computation being performed. The status information for
each process is saved by the operating system in a process status block (PSB) for
that process. A PSB is created when a process first begins execution and is
deleted when that process terminates. The PSB contains an indication of the
process state (running, ready, or blocked), an area that is used to save all
machine registers (including SW and PC), and a variety of other information
(for example, an indication of the system resources used by the process).

329

332

System Software

whether or not the associated event has occurred. The ESB also contains a
pointer to ESBQUEUE, a list of all processes currently waiting for the event.
Further information about ESBs, and examples of their creation and use, are
presented in Section 6.2.3. '

The WAIT request is issued by a running process and indicates that the
process cannot proceed until the event associated with ESB has occurred. Thus
the algorithm for WAIT first examines ESBFLAG. It the event has already
occurred, control is immediately returned to the requesting process. If the
event has not yet occurred, the running process is placed in the blocked state
and is entered on ESBQUEUE. The dispatcher is then called to select the next
process to be run. |

The SIGNAL request is made by a process that detects that some event cor-
responding to ESB has occurred. The algorithm for SIGNAL therefore records
the event occurrence by setting ESBFLAG. It then scans ESBQUEUE, the list of
processes waiting for this event. Each process on the list is moved from the
blocked state to the ready state. Control is then returned to the process that
made the SIGNAL request.

If the dispatching method being used is based on priorities, a slightly
different SIGNAL algorithm is often used. On such systems, it may happen
that one or more of the processes that were made ready has a higher priority
than the currently running process. To take this into account, the SIGNAL
algorithm would invoke the dispatcher instead of returning control directly to
the requesting process. The dispatcher would then transfer control to the
highest-priority process that is currently ready. This scheme is known as pre-
emptive process scheduling. It permits a process that becomes ready to seize
control from a lower-priority process that is currently running, without wait-
ing for the time-slice of the lower-priority process to expire.

6.2.3 /O Supervision

On a typical small computer, such as a standard SIC machine, input and out-
put are usually performed 1 byte at a time. For example, a program that needs
to read data might enter a loop that tests the status of the I/O device and exe-
cutes a series of read-data instructions. On such systems, the CPU is involved
with each byte of data being transferred to or from the I/O device. An exam-
ple of this type of /O programming can be found in Fig. 2.1.

More advanced computers often have special hardware to take care of
the details of transferring data and controlling I/O devices. On SIC/XE, this
function is performed by simple processors known as I/O channels. Figure 6.10
shows a typical I/O configuration for SIC/XE. There may be as many as
16 channels, and up to 16 devices may be connected to each channel. The

Operating Systems

g
g

Channel 0

bEod

Central

CPU memory Channel 1

1"

Channel 2

St

Figure 6.10 Typical I/O configuration for SIC/XE.

identifying number assigned to an I/O device also reflects the channel to
which it is connected. For example, the devices numbered 20-2F are connected
to channel 2.

The sequence of operations to be performed by a channel is specified by a
channel program, which consists of a series of chaninel commands. To perform an
I/0 operation, the CPU executes a Start I/O (SIO) instruction, specifying a
channel number and the beginning address of a channel program. The channel
then performs the indicated 1/O operation without further assistance from the
CPU. After completing its program, the channel generates an I/O interrupt.
Several channels can operate simultaneously, each executing its own channel
program, so several different I/O operations can be in progress at the same
time. Each channel operates independently of the CPU, so the CPU is free to
continue computing while the 1/O operations are carried out.

The operating system for a computer like SIC/XE is involved with the I/O
process in several different ways. The system must accept I/O requests from
user programs and inform these programs when the requested operations
have been completed. It must also control the operation of the I/O channels
and handle the I/O interrupts generated by the channels. In the remainder of

333

334

System Software

this section we discuss how these functions are performed and illustrate the
process with several examples.

A SIC/XE program requests an I/O operation by executing an SVC 2
instruction. Parameters specify the channel number, the beginning address of
a channel program, and the address of an event status block (ESB) that is used
to signal completion of the I/O operation. When the program must wait
for the results of an I/O operation, it executes an SVC 0 (WAIT) instruction.
This instruction specifies the address of the ESB that corresponds to the
I/0 operation being awaited. Thus the general pattern for performing an I/0O
operation is

SvC 2 {request I/0 operation}

SVC 0 {wait for result}

In some cases, the WAIT may come immediately after the 1/0O request.
However, because computing and I/O can be performed at the same time, it
may be possible for the program to continue processing while awaiting the
results of the I/O operation.

This procedure is illustrated in more detail by the program in Fig. 6.11.
This program first loads the beginning address of a channel program, a chan-
nel number, and the address of an ESB into registers. The program then
executes an SVC instruction to request the I/O operation. The channel pro-
gram, defined as a sequence of data items, contains two channel commands.
The first command specifies that a read operation is to be executed on device
number 1 connected to the channel; 256 bytes of data are to be transferred into
memory beginning at address BUFIN. The second command causes the chan-
nel to halt, which generates an I/O interrupt. The ESB consists of a 3-byte data
area. The first bit of this ESB is a flag that is used to indicate whether or not the
associated event has already occurred (0 = no, 1 = yes). The rest of the ESB
is used to store a pointer to the queue of processes that are waiting for this
event. If no processes are currently waiting, the pointer value is zero. Thus an
initial ESB value of X'000000 indicates that the associated event has not yet
occurred and that no processes are currently waiting for it. Further details
concerning the format of SIC/XE channel commands can be found
in Appendix C.

After issuing the I/O request, the program in Fig. 6.11 executes an SVC 0
instruction. Register A contains the address of the ESB that corresponds to the
event being awaited, which in this case is the I/O operation just requested.

* After the read operation has been completed, the program moves the input

Pl START

LOOP LDA

READ BYTE

BYTE
BYTE

ESB BYTE
BUFIN RESB

END

#READ
#1
#ESB

#ESB

#0
ESB
#READ

#1
#ESB

LOOP

X1l
X’0100"
BUFIN

X’000000000000"

X’000000°
256

Operating Systems

{initialization}

ADDRESS OF CHANNEL PROGRAM
CHANNEL NUMBER

ADDRESS OF EVENT STATUS BLOCK
ISSUE READ REQUEST

ADDRESS OF ESB

WAIT FOR COMPLETION OF READ

{move data to program’s work area}

INITIALIZE ESB

ISSUE NEXT READ REQUEST

{process data}

CHANNEL PROGRAM FOR READ
FIRST COMMAND--

COMMAND CODE = READ, DEVICE = 1

BYTE COUNT = 256

ADDRESS OF INPUT BUFFER
SECOND COMMAND--

HALT CHANNEL

EVENT STATUS BLOCK FOR READ
BUFFER AREA FOR READ

Figure 6.11 Example of performing I/O using SVC requests.

data to a work area. It then re-initializes the ESB and requests an 1/O opera-
tion to read the next 256 bytes of data. While this I/O operation is being per-
formed, the program can process the data that has previously been read, thus
overlapping the computation and input functions. After completing the pro-
cessing of the previous data, the program returns to the top of its main loop to
await the completion of the next read operation.

335

336

System Software

A slightly more complicated example is shown in Fig. 6.12. This program
copies 4096-byte data records from device 22 to device 14. There are two chan-
nel programs, one for the read operation and one for the write, and two ESBs.
The main loop of this program first issues a read request, and then waits for
the completion of this read and for the completion of the previous write. After
both operations are completed, the program builds the output record and
issues the write request. It then returns to the top of the loop to read the next
input record. On the first iteration of the loop, there has been no previous
write request. At this time, however, the ESB for the write operation has its ini-
tially defined value of X’800000". The first bit of this ESB has the value 1, indi-
cating that the corresponding event has already occurred, so control is
returned directly to the user program when the operating system WAIT routine
is called (see Fig. 6.9).

Because the input and output operations for the program in Fig. 6.12 use
different channels, these two operations are performed independently of each
other. Either operation might be completed before the other. It is also possible
that the two operations might actually be performed at the same time. The
program is able to coordinate the related 1/O operations because there is a dif-
ferent ESB corresponding to each operation. This program illustrates how 1/0
channels can be used to perform several overlapped I/0 operations. Later in
this section we consider a detailed example of this kind of overlap.

The programs in Figs. 6.11 and 6.12 illustrate I/O requests from the user’s
point of view. Now we are ready to discuss how such requests are actually
handled by the operating system and the machine. The SIC/XE hardware pro-
vides a channel work area in memory corresponding to each 1/O channel. This
work area contains the starting address of the channel program currently
being executed, if any, and the address of the ESB corresponding to the current
operation. When an I/0O operation is completed, the outcome is indicated by
status flags that are stored in the channel work area. These flags indicate con-
ditions such as normal completion, I/O error, or device unavailable. The chan-
nel work area also contains a pointer to a queue of 1/O requests for the
channel. This queue is maintained by the operating system routines. Appendix C
contains additional details on the location and contents of the channel work
areas for SIC/XE. ‘;

Figure 6.13 outlines the actions taken by the operating system in response
to an I/O request from a user program. If the channel on which I/0 is being
requested is busy performing another operation, the operating system inserts
the request into the queue for that channel. If the channel is not busy, the oper-
ating system stores the current request in the channel work area and starts
the channel. In either case, control is then returned to the process that made
the 1/0 request so that it can continue to execute while the 1/0 is being
performed.

P2 START 0
LOOP LDA #0
STA RDESB
LDA #READ
LDS #2
LoT #RDESB
SvVC 2
LbA #RDESB
SvC 0
LDA #WRESB
svcC 0
LDA #0
STA WRESB
LDA #WRITE
LDS #1
LDT #WRESB
SVC 2
J LOOoP
READ BYTE Xr12-
BYTE X’1000°
WORD BUFIN
BYTE X’000000000000°
WRITE BYTE X'24’
BYTE X’1000°
WORD BUFOUT
. BYTE X’000000000000°
RDESB BYTE X’000000"
WRESB BYTE X’800000°
BUFIN RESB 4096
BUFOUT RESB 4096
END

Operating Systems 337

{initialization}
INITIALIZE ESB FOR READ

ISSUE READ REQUEST FOR DEVICE 22

WAIT FOR COMPLETION OF READ

WAIT FOR COMPLETION OF PREVIOUS WRITE

{build output record}
INITIALIZE ESB FOR WRITE

ISSUE WRITE REQUEST FOR DEVICE 14

CHANNEL PROGRAM FOR READ
FIRST COMMAND--
COMMAND = READ, DEVICE = 2
BYTE COUNT = 4096
ADDRESS OF INPUT BUFFER
SECOND COMMAND--
HALT CHANNEL

CHANNEL, PROGRAM FOR WRITE
FIRST COMMAND--
COMMAND = WRITE, DEVICE = 4
BYTE COUNT = 4096
ADDRESS OF OUTPUT BUFFER
SECOND COMMAND--
HALT CHANNEL
EVENT STATUS BLOCK FOR READ
EVENT STATUS BLOCK FOR WRITE
INPUT BUFFER
OUTPUT BUFFER

Figure 6.12 Program illustrating multiple I/0 requests.

338

System Software

procedure IOREQ (CHAN, CP, ESB)

test channel using TIO
if channel is busy then
insert (CP,ESB) cn queue for channel
else
begin
store (CP,ESB) in channel work area
start channel using SIO
end
return control to requesting process using LPS

Figure 6.13 Algorithm for processing an I/O request (SVC 2).

Figure 6.14 describes the actions taken by the operating system in response
to an I/0 interrupt. The number of the I/O channel that generated the inter-
rupt can be found in the status word that is stored in the I/O-interrupt work
area. The interrupt-handling routine then examines the status flags in the
work area for this channel to determine the cause of the interrupt.

If the channel status flags indicate normal completion of the I/O operation,
the interrupt handler signals this completion via the ESB that was specified in
the I/O request. This may be done either by making an SVC request, which
results in a nested interrupt situation, or by directly invoking the part of the oper-
ating system that processes SIGNAL requests. In either case, the ESB is marked
to indicate completion of the I/O operation. Any process that had previously
been awaiting this completion is returned to the ready state (see Section 6.2.2).
The 1/O-interrupt handler then examines the queue of pending requests for
this channel and starts the channel performing the next request, if any.

If the channel status flags indicate some abnormal condition, the operating
system initiates the appropriate error-recovery action. This action, of course,
depends upon the nature of the I/O device and the error detected. For exam-
ple, a parity error on a magnetic tape device is normally handled by backspac-
ing the tape and restarting the I/O operation (up to some maximum number
of times). On the other hand, an indication that a line printer is out of paper is
handled by issuing a message to the computer operator before attempting any
further recovery. If the operating system determines that an I/O error is
uncorrectable, it may terminate the process that made the I/O request and
send an appropriate message to the user. Alternatively, it might signal comple-
tion of the operation and store an error code in the ESB. The requesting
process could then make its own decision about whether or not to contiriue.

After its processing is complete, the interrupt handler ordinarily returns
control by restoring the status of the interrupted process. However, if the CPU

Operating Systems

procedure IOINTERRUPT (CHAN)

examine status flags in channel work area
if normal completion of operation then
begin
get ESB address from channel work area
use SVC to signal occurrence of event for ESB
if request queue for channel is not empty then
begin
get (CP,ESB) for next request from queue
store (CP, ESB) in channel work area
start channel using SIO
end {if not empty}
end {if normal completion}
else
take appropriate error recovery action

if CPU was in idle state when the interrupt occurred then

DISPATCH
else
return control to interrupted process using LPS

Figure 6.14 Algorithm for processing an I/O interrupt.

was idle at the time of the interrupt, the dispatcher must be invoked. This is
because the interrupt processing may have caused a process to become ready
to execute. If this is the case, the CPU should not be restored to an idle status.
Likewise, the dispatcher would be invoked if preemptive process scheduling
is being used (see Section 6.2.2).

Figure 6.15 provides an illustration of the process-scheduling and 1/0-
supervision functions we have described. Two user processes, designated P1 and
P2, are being executed concurrently. These are the same processes that are out-
lined in Figs. 6.11 and 6.12. We assume the time-slice provided to each process by
the dispatcher is relatively large so that timer interrupts do not ordinarily occur
before the process must give up control for some other reason. The diagram in
Fig. 6.15 shows the flow of activities being performed by the CPU, divided
between the user processes and the parts of the operating system, and by the two
[/0O channels. The time scale runs from top to bottom on the diagram. Distances
on this scale are not necessarily proportional to the actual lengths of time
involved. Sequence numbers are provided to aid in the use of this example.

At the beginning of the example, processes P1 and P2 have both been initi-
ated, and P1 has been dispatched first. Both I/O channels are idle. At sequence
number (1), P1 makes its first I/O request by executing an SVC instruction.
This causes an interrupt, which transfers control to the SVC-interrupt handler.
For ease of reference, this I/O operation is designated in the diagram by (a).

339

System Software

o|p! sewooeq NdO

() uonesado jo uone|dwod 10} syem 24
(a) uoneiado Oy sisenbas 24

(p) uonesado Oy} sisanbai g4

u01}3dWOD JUBAS SBIRDIPUI YOIYM GST UO SHeM Zd

(9) uonesado jo uona|dwod 10} syem Ld

(o) uonesado Q| sisenbas |4

(q) jo uoneydwos jeubis
2 1suuey) wol} \dnuisiul /)

(e) Jo uone|dwoos eubis
1 jauuey) wouy dnudut O/i

8|p1 s8wWo028q NdO
{q) uoyesado j0 uonadwod 10} syem Zd

(q) uonesado Oy sisanbai g4

(e) uonesado jo uonejdwos 10 syem |4

(e) uonesado O/ sisanbai |4

sjuawwo)

(e

(ge)
SRR | (z¢)

| (1e)
[C--——-—-——-- (00)
——===—====—m (62)
—————————— (82)
——o——————==n (22)
——————————— (92)
———————————— (s2)

——— (v2)
——d (€2)

——————e— e ————— (22

———— ——— i ——— —— (12)

Hllllll|l||llllu (02)

) ——— e e e e e e e e e e (61)
—_—————— (81)
_HIIIIIIIH (1)
T llllllllllllllllllllllu (o1)
| It (s1)
e (1)
Illlll.u”_ (e1)
-———— 1)
T I (L)
(o)
_”lIIIIIH (6)
———————— e (®
—— e e o o e o e ()
@ —_——————————- (9)
- ()
—_—————- ¥
—_———————— —————— (e
mllllllllllllll @
@® i B

zZ i Jejpusy lejpuey ioydnedsig 24 \d

. __E_.:z_._ O/l dnueyu) JAS :

sjouury) Nndd

341

Operating Systems

(perojdwod
Apesaje) (p) uonesedo Jo uona|duiod 10} sHem gd

(3) uonesado Jo uona|dwod 10} SHEM id

(p) J0 uonsidwod jeubis
| |euuey) Woi) (dnudiul ON

(8) jo uonajdwod jeubis
Z leuuey) woyy ydnuaut O/l

()) uonesado O/i sisenbay 1d

() Jo uona|dwod jeubis
| |euury) wo) ydnusaiu ON

‘suoiouny mc__sumcom-mmmooa‘ pue uoisinuedns-Qy| jo ajdwex3 619 ainbi4

A

W

®

- -
]

I L

mulllnllmunnnuununuunnuu

11

|

RN

o .
oottt

—mmmmm————————1

R

———-

-

(es)
(29)
(15)
(05)
(6¥)
(8¥)
)
(ov)
(sv)
(v¥)
(ev)
()
(1t}
(ov)
(e€)
(8€)
(2€)
(9€)
(se)

ve)

342

System Software

The 1/0 request specifies channel 1, which is currently free. Therefore,
the SVC-interrupt handler starts the channel program and returns control to
process P1 (sequence (2)).

At (3), P1 issues a WAIT request for operation (a) by executing another
SVC instruction (SVC 0). Control is once again transferred to the SVC-
interrupt handler. The ESB specified in this WAIT request indicates that the
associated event has not yet occurred. Therefore, process P1 is placed in the
blocked state, and the dispatcher is invoked (4). The dispatcher then switches
control to process P2 (5). At sequence number (6), P2 issues its first I/O
request, which is for device 2 on channel 2. Since channel 2 is free, the I/O
operation is started, and control returns to P2. At (8), P2 must wait for the
completion of its I/O request; since this event has not yet occurred, P2
becomes blocked. At (9), the dispatcher is invoked as before. This time, how-
ever, both processes are blocked, so the dispatcher places the CPU into an idle
state (10). Note that both I/O channels are still active.

The CPU remains idle until (11), when channel 1 completes its I/O
operation. We assume in this example that all operations are completed nor-
mally. The channel generates an I/O interrupt, which switches the CPU from its
idle state to the I/O-interrupt handler. After determining that the operation was
completed normally, the I/O-interrupt handler issues a SIGNAL request
(SVC 1) for the associated ESB. This switches control to the SVC-interrupt
handler (12). Process P1, which is waiting on this ESB, is placed in the ready
state. The SVC handler then returns control to the I/ O-interrupt handler (13).
The dispatcher is invoked at sequence (14), and switches control to process P1 at
(15). A similar series of operations occurs when channel 2 completes its
operation (16); this causes process P2 to be made ready. However, since the CPU
was not idle at the time of the interrupt, control does not pass immediately to
P2. The 1/O-interrupt handler restores control to the interrupted process P1. P2
does not receive control until P1 issues its next WAIT request at sequence (22).

You should carefully follow through the other steps in this example to be
sure you understand the flow of control in response to the various interrupts.
In doing this, you may find it useful to refer to the algorithms in Figs. 6.8, 6.9,
6.13, and 6.14. Note in particular the many different types of overlap between
the CPU execution and the I/O operations of the different processes. The abil-
ity to provide such flexible sequencing of tasks is one of the most important
advantages of an interrupt-driven operating system.

6.2.4 Management of Real Memory

Any operating system that supports more than one user at a time must provide
a mechanism for dividing central memory among the concurrent processes.

Operating Systems

' Many multiprogramming and multiprocessing systems divide memory into
partitians, with each process being assigned to a different partition. These parti-
tions may be predefined in size and position (fixed partitions), or they may be
allocated dynamically according to the requirements of the jobs being executed
(variable partitions).

When variable partitions are used, it is not necessary to select partition sizes
in advance. However, the operating system must do more work in keeping
track of which areas of memory are allocated and which areas are free. Usually
the system does this by maintaining a linked list of free memory areas. This list
is scanned when a new partition is to be allocated. The partition is placed either
in the first free area in which it will it (first-fit allocation), or in the smallest free
area in which it will fit (best-fit allocation). When a partition is released, its
assignied memory is returned to the free list and combined with any adjacent
free areas. A detailed discussion and comparison of such dynamic storage allo-
cation algorithms can be found in Lewis and Denenberg (1991).

Regardless of the partitioning technique that is used, it is necessary for the
operating system and the hardware to provide memory protection. When a job is
running in one partition, it must be prevented from modifying memory locations
in any other partition or in the operating system. Some systems allow the reading
of data anywhere in memory, but permit writing only within a job’s own parti-
tion. Other systems restrict both reading and writing to the job’s partition.

Some type of hardware support is necessary for effective memory protec-
tion. One simple scheme provides a pair of bounds registers that contain the
beginning and ending addresses of a job’s partition. These registers are not
directly accessible to user programs; they can be accessed only when the CPU
is in supervisor mode. The operating system sets the bounds registers when a
partition is assigned to a user job. The values in these registers are automati-
cally saved and restored during context switching operations such as those
caused by an interrupt or an LPS instruction. Thus the bounds registers
always contain the beginning and ending addresses of the partition assigned
to the currently executing process. For every memory reference, the hardware
automatically checks the referenced address against the bounds registers. If
the address is outside the current job’s partition, the memory reference is not
performed and a program interrupt is generated.

A different type of memory protection scheme is used on SIC/XE. Each
800-byte (hexadecimal) block of memory has associated with it a 4-bit storage
protection key. These keys can be set by the operating system using the privi-
leged instruction SSK (Set Storage Key). Each user process has assigned to it
a 4-bit process identifier, which is stored in the ID field of the status word SW.
When a partition is assigned to a job, the operating system sets the storage keys
for all blocks of memory within the partition to the value of the process identi-
fier for that job. For each memory reference by a user program, the hardware

343

System Soﬂw&re

automatically compares the process identifier from SW to the protection key for
the block of memory being addressed. If the values of these two fields are not
the same, the memory reference is not performed and a program interrupt is
generated. However, this test is not performed when the CPU is in supervisor
mode; the operating system is allowed to reference any location in memory.

One problem common to all general-purpose dynamic storage allocation
techniques is memory fragmentation. Fragmentation occurs when the available
free memory is split into several separate blocks, with each block being too
small to be of use. :

Figure 6.16 illustrates one possible solution to this problem: relocatable par-
titions. After each job terminates, the remaining partitions are moved as far as
possible toward one end of memory. This movement gathers all the available
free memory together into one contiguous block that is more useful for allocat-
ing new partitions. :

In practice, the implementation of relocatable partitions requires some hard-
ware support. There is a special relocation register that is set by the operating sys-
tem to contain the beginning address of the program currently being executed.
This register is automatically saved and restored during context switching' oper-
ations, and its value is modified by the operating system when a program is

Operating Operating Operating Operating
system system system system-
10000 10000 10000 10000 Job 4
Job 1 Job 1 Job 3 14000
1A000 1A000 1A800 Job 4 Job 5
Job 3 1E800
Job 2 24800 Job 5 22000
o
28800 }—J00 4 Job6
2E000 Job § 2C800] 2D000
Job 3 Job Job 7
38800 ———— 36800 37800 39000
3C800 Job 6 Job 7
41800 Job 8
Job 5 St
Job 7
4A800 s
. 4D800 .
Job 2 Job 1 Job 3
terminates terminates terminates
() —p (b) - (¢} - (d)

Figure 6.16 Memory allocation for jobs using relocatable partitions.

Operating Systems

moved to a new location. The value in the relocation register is automatically
added to the address for every memory reference made by the user program.

It is important to understand that the relocation register is under the
control of the operating system; it is not directly available to the user program.
Thus this register is quite different from the programmer-defined base regis-
ters found on SIC/XE, PowerPC, and many other computers. The relocation
register is automatically involved each time a program refers to any location in
memory, so it provides exactly the same effect as if each program were really
loaded at actual address 00000. Indeed, on many computers there is no direct
way for a user program to determine where it is actually located in memory.
Thus this type of relocation applies to addresses given by pointers in data
structures and values in base registers as well as to addresses in instructions.
Note also that this automatic relocation performed by the hardware eliminates
the need for relocation when the program is loaded.

In this section-we described methods for allocating program partitions of
predetermined size. Some operating systems allow user programs to dynami-
cally request additional memory during execution. The additional memory
assigned need not necessarily be contiguous with the original partition. Such
dynamic storage allocation is usually performed with methods similar to those
used in managing storage for data structures. A good discussion of such
techniques can be found in Lewis and Denenberg (1991).

6.2.5 Management of Virtual Memory

A virtual resource is one that appears to a user program to have characteristics
that are different from those of the actual implementation of the resource.
User programs are allowed to use a large contiguous virtual memory, some-
times called a virtual address space. This virtual memory may even be larger
than the total amount of real memory available on the computer. The virtual
memory used by a program is stored on some external device (the backing
store). Portions of this virtual memory are mapped into real memory as they
are needed by the program. The backing store and the virtual-to-real mapping
are completely invisible to the user program. The program is written exactly as
though the virtual memory really existed.

In this section we describe demand paging, which is one common method
for implementing virtual memory. References to discussions of other types of
virtual memories can be found at the end of the section.

In a typical demand-paging system, the virtual memory of a process is
divided into pages of some fixed length. The real memory of the computer
is divided into page frames of the same length as the pages. Any page from any
process can potentially be loaded into any page frame in real memory.

345

346

System Software

The mapping of pages onto page frames is described by a page map table
(PMT); there is one PMT for each process in the system. The PMT is used by
the hardware to convert addresses in a program'’s virtual memory into the cor-
responding addresses in real memory. This conversion process is similar to the
use of the relocation register described in the last section. However, there is
one PMT entry for each page instead of one relocation register for the entire
program. This conversion of virtual addresses to real addresses is known as
dynamic address translation.

These concepts are illustrated by the program outlined in Fig. 6.17. The
program is divided into pages that are 1000 bytes (hexadecimal) in length.
Virtual addresses 0000 through OFFF are in Page 0; addresses 1000 through
1FFF are in Page 1, and so on. When the execution of the program is begun,
the operating system loads Page 0, the page containing the first executable
instruction, into some page frame in real memory. Other pages are loaded into
memory as they are needed.

The processes of dynamic address translation and page loading are
illustrated in Fig. 6.18. In Fig. 6.18(a), Page 0 of the program has been loaded
into page frame 1D (i.e., real-memory addresses 1D000-1DFFF). Consider
first the JEQ instruction that is located at virtual address 0103. The operand
address for this instruction is virtual address 0420. We used an instruction
format that provides direct addressing to make this initial example easier to fol-
low. The operand address 0420 is located within Page 0, at offset 420 from the
beginning of the page. The page map table indicates that Page 0 of this pro-
gram is loaded in page frame 1D (that is, beginning at address 1D000). Thus the
real address calculated by the dynamic address translation is 1D420.

Next let us consider the LDA instruction at virtual address 0420. The
operand for this instruction is at virtual address 6FFA (Page 6, offset FFA).
However, Page 6 has not yet been loaded into real memory, so the dynamic
address translation hardware is not able to compute a real address. Instead,
it generates a special type of program interrupt called a page fault [see
Fig. 6.18(b)]. The interrupt-handling routine, which we discuss later, responds
to this interrupt by loading the required page into some page frame. Let us
assume page frame 29 is chosen. The instruction that caused the interrupt
is then reexecuted. This time, as shown in Fig. 6.18(c), the dynamic address
translation is successful.

The other pages of the program are loaded on demand in a similar way.
Assume that Fig. 6.17 shows all the Jump instructions in the program as well
as all instructions whose operands are located in another page. When control
passes from the last instruction in Page 0 to the first instruction in Page 1, the
instruction-fetch operation causes a page fault, which results in the loading of
Page 1. The STA instruction at virtual address 1840 causes Page 8 to be loaded.
Page 2 is then loaded as a result of the instruction-fetch cycle, just as Page 1

Page O

Page 1

Page 2

Page 3

Page 4

Page 5

\

Operating Systems
Loc Source statement Object code

000000 P3 START O

000103 +JEQ SKIP1 33100420

000420 SKIPL +LDA BUFF1 03106FFA

001840 SKIP2 +STA BUFF2 OF108108

002020 +JLT SKIP3 3B104A00

002024 J SKIP2 3F281C

004400 SKIP3 LDX #8 050008

004A20 +STA BUFF1,X OF906FFA

Figure 6.17 Program for illustration of demand paging.

347

348 System Software

Loc Source statement Object code
Page 6
Q06FFA BUFF1 RESW
Page 7
f
008108 BUFF2 RESW
Page 8 { °
\ .
p
Page 9 ¢
\ .
Page A
00A800 END

Figure 6.17 (cont’d)

was. Now consider the two Jump instructions at addresses 2020 and 2024. If
the first of these jumps is executed (i.e., if the less-than condition is true), it
causes Page 4 to be loaded; otherwise, Page 4 remains unloaded. In this latter
case, the unconditional jump at 2024 transfers control back to a location in
Page 1 (which has already been loaded). After control passes to Page 4, the
STA instruction at 4A20 is executed. This instruction specifies an operand
address of 6FFA, with indexed addressing. We assume the value 8 remains in
the index register. The resulting target address is 7002; as a result of this
instruction, Page 7 is loaded. ’

1D000!
1D103| 33100420

|r— (Virtual address)
ey 0420
Page=0 Offset=420
Page map
table

1DFFF

-
»
~

e 1 D420

v

Page frame=1D

(Real address)

Dynamic address translation

1D000
1D420

1DFFF

Operating Systems 349

03106FFA

(Virtual address)
ey 6F FA

Page=6 Offset=FFA

v

Page map

P
(-4
~

table

v

Page frame="?

y

Page fault
interrupt

Figure 6.18 Examples of dynamic address translation and demand paging.

Figure 6.19 shows the situation after the sequence of events just described.
The page map table for P3 reflects the fact that Pages 0, 1, 2, 4, 6, 7, and 8 are
currently loaded, and gives the corresponding page frame numbers. There is a
similar page table for every other program in the system. Note that the PMT
also indicates which pages have been modified since they were loaded (in this
case, Pages 7 and 8). This information is used by the page-fault interrupt-
handling routine when it is necessary to remove a page already in memory.

Figure 6.20 summarizes the address-translation and demand-paging func-
tions illustrated in the previous discussion. Figure 6.20(a) describes the
dynamic address translation algorithm used. Recall that this algorithm is
implemented directly by the hardware of the machine. If the dynamic address
translation cannot be completed because the required page is not in memory, a
page fault interrupt occurs.

350

System Software

(Virtual address)

— > 6FFA
3 Page=6 Offset=FFA
10000 Pagjmap
1D420| 03106FFA ol
1DFFF . Page frame=29
L]
¢ 29FFA
: (Real address)
L]
L]
L]
29000
29FFF e
L]
.

(c)
Figure 6.18 (contd)

Figure 6.20(b) describes the interrupt-handling routine that is invoked for a
page fault. The operating system maintains a table describing the status of all
page frames. The first step in processing a page fault interrupt is to search this
table for an empty page frame. If an empty page frame is found, the required
page can be loaded immediately. Otherwise, a page currently in memory must
be removed to make room for the page to be loaded. If the page being
removed has been modified since it was last loaded, then the updated version
must be rewritten on the backing store. If the page has not been modified, the
image in memory can simply be discarded.

The page fault interrupt-handling routine described in Fig. 6.20(b) requires
the performance of at least one physical I/O operation. Thus this routine takes
much longer to execute than any of the other interrupt handlers we have
discussed. It is usually not desirable to inhibit interrupts for long periods of

